
Computer Networks 242 (2024) 110254

A
1

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

A cost and demand sensitive adjustment algorithm for service function chain
in data center network
Yuantao Wang, Zhaogang Shu ∗, Shuwu Chen, Jiaxiang Lin, Zhenchang Zhang
The Computer and Information College, Fujian Agriculture and Forestry, Fuzhou, 350002, China

A R T I C L E I N F O

Keywords:
Service function chain
Network function virtualization orchestrator
Resource management

A B S T R A C T

The introduction of Network Function Virtualization (NFV) and Software-Defined Network (SDN) architectures
has significantly reduced the Operational Expenditure (OPEX) and Capital Expenditure (CAPEX) of network
system. However, NFV orchestration management also brings about challenges. After the initial deployment
of VNFs, due to the volatility of network requests, the original deployment may not be able to meet user
resource demands. The key issue is how to readjust resources dynamically to accommodate more network
requests without violating Quality of Service (QoS) for users. Several existing techniques can be used to achieve
this goal, such as horizontal scaling, vertical scaling, and virtual network function (VNF) migration. However,
these techniques inevitably incur some overhead, such as the cost of instantiating VNF and link rerouting.
Additionally, resource adjustment may also result in unbalanced distribution of network resources. In this
paper, an Intelligent Service Function Chain Dynamic Adjustment Algorithm (ISFCDAA) is proposed to address
the above challenges. Firstly, an Integer Linear Programming (ILP) model is established with the objective
of minimizing the long-term adjustment cost and reducing the imbalance of resource distribution. Then we
transform the optimization process into a Markov Decision Process (MDP). Secondly, to solve the problems
that the state and action space is too large and the state transition probability is uncertain in MDP, a SFC
dynamic adjustment algorithm based on deep reinforcement learning is proposed. This algorithm can obtain an
approximate optimal adjustment strategy for ILP model. The simulation results show that ISFCDAA can reduce
the adjustment overhead and maintain a balanced distribution of network resources while ensuring the QoS.
Compared with the existing algorithms, the average standard deviation of resource distribution of ISFCDAA is
reduced by up to 9.90%, the average acceptance rate of ISFCDAA is improved by up to 39.57%, and the average
long-term profit is improved by up to 42.92%. The incorporation of cost and demand-sensitive considerations
into ISFCDAA enhances its responsiveness to fluctuating network demands, solidifying its effectiveness in
dynamic resource management scenarios.
1. Introduction

As the Internet continues to evolve, users have more and more
diverse demands for the network services. In traditional networks,
network service operators typically utilize specific network devices to
provide different network services, such as firewall, load balancing
and network address translation. However, the software and hardware
in these specific network devices are tightly coupled, which reduces
configuration flexibility and increases device maintenance and man-
agement costs. Especially for 5G/6G network, service operators need
to spend a lot of money to purchase specific network devices, and it
is also difficult to provide various network services in the traditional
network architecture. For these reasons, the European Telecommu-
nications Standards Institute (ETSI) proposed the Network Function

∗ Corresponding author.
E-mail address: zgshu@fafu.edu.cn (Z. Shu).

Virtualization (NFV) technology [1]. The emergence of NFV technol-
ogy decouples network functions from specific hardware by trans-
forming traditional network function into virtual network function
(VNF) through virtualization and placing the VNF on industry standard
servers, as shown in Fig. 1. It does not require specific hardware de-
vices, which improves the flexibility and scalability of VNF placement,
and achieves low-cost and flexible network management. It enables
VNF to be widely used in various network scenarios such as data center,
5G slice and edge computing.

However, NFV technology requires complex orchestration to allo-
cate physical resources, so it is essential to combine programmable
Software-Defined Network (SDN) technology [2]. Supported by SDN/
NFV technology, multiple VNFs are connected in a specific order to
form a Service Function Chain (SFC) based on user requirements and
vailable online 16 February 2024
389-1286/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comnet.2024.110254
Received 17 August 2023; Received in revised form 10 February 2024; Accepted 1
4 February 2024

https://www.elsevier.com/locate/comnet
https://www.elsevier.com/locate/comnet
mailto:zgshu@fafu.edu.cn
https://doi.org/10.1016/j.comnet.2024.110254
https://doi.org/10.1016/j.comnet.2024.110254

Computer Networks 242 (2024) 110254Y. Wang et al.
Fig. 1. Traditional network & network with NFV.
VNF attributes. The NFV orchestrator effectively places VNF instances
on general-purpose servers based on the SFC requirements and physical
device capacity constraints [3]. Subsequently, it determines the dy-
namic execution order of VNFs for SFC scheduling [4], aiming to reduce
the overall service time. If the SFC requirements are time-varying [5],
we should dynamically adjust physical resources for the requests that
already present in the network to adapt to changing requirements.
By adjusting resources, the load can be efficiently distributed among
available resources, maximizing the efficiency of resource utilization,
improving overall network throughput, and reducing operational costs.
At the same time, more requests are being received, allowing network
operators to gain significant long-term revenue. Nonetheless, achieving
these benefits goes beyond simply resource adjustment as it involves
the inevitable adjustment overhead. Therefore, a critical challenge lies
in appropriately adjusting physical resources based on the current
network state while maintaining a balanced distribution of resources
and minimizing the adjustment overhead.

Existing work mainly focus on three resource adjustment strategies:
(i) horizontal scaling, (ii) vertical scaling, and (iii) migration. In [6],
horizontal scaling is performed by increasing or decreasing the number
of VNF instances, which can quickly respond to fluctuations in requests
and provide high elasticity and scalability. In [7], vertical scaling is
applied to multi-core CPUs in order to control CAPEX. In [8], an
algorithm is proposed to integrate VNF instances by migrating placed
VNF instances. While each of these strategies has its own advantages,
applying them individually may have limitations. For example, in ver-
tical scaling, as the computational capacity of VNF instances increase,
this strategy may not always be feasible if there is not enough residual
resource in the underlying physical devices. Besides when there are a
large number of requests, horizontal scaling cannot be satisfied with
fewer physical devices. It is also noted that horizontal scaling tends to
produce more resource fragmentation in the underlying physical de-
vices. And in order to create a new instance, a longer routing path may
be needed, which results in an inability to meet the latency. Similarly
migration also involves additional resource consumption because of a
longer path. And if VNF migrations are frequent or result in service
disruptions, it can affect the Service Level Agreement (SLA). Overall,
existing works rarely consider all three strategies simultaneously and
pay little attention to the distribution of the resources. Therefore,
we propose a dynamic adjustment algorithm called Intelligent SFC
Dynamic Adjustment Algorithm (ISFCDAA) by combining horizontal,
2

vertical scaling and migration. Notably, ISFCDAA is designed as a cost
and demand sensitive adjustment algorithm, where ‘cost’ represents
considerations related to adjustment expenses, while ‘demand’ reflects
the algorithm’s adjustment to changing resource demands. Through the
integration of these factors, ISFCDAA flexibly adjusts the resources ac-
cording to the requirements, achieves a balanced resource distribution,
and minimizes the resource adjustment cost while ensuring QoS. The
contributions of this paper are as follows:

1. We develop an Integer Linear Programming (ILP) model aimed
at minimizing the standard deviation of resource distribution
and the overhead of resource adjustment. Additionally, we pro-
vide a proof of the NP-hardness of the problem. Importantly, our
work considers the balance of resource distribution, a dimension
that has been largely overlooked in previous related works.

2. The optimization problem is transformed into Markov Decision
Process (MDP), and then ISFCDAA, which considers the inte-
gration of cost and demand-sensitive aspects, is proposed to
solve the problems with large state space and action space and
unknown transition probabilities. Leveraging an advanced deep
reinforcement learning method, ISFCDAA utilizes Double Deep
Q-Network (DDQN) for decision-making, a novel approach in
our specific context. This novel methodology enables ISFCDAA
to intelligently adapt to the time-varying network environment,
thereby facilitating effective resource adjustment.

3. The proposed algorithm and existing algorithms are evaluated
on a real network in SDNlib [9]. The results show that ISFC-
DAA reduces the average standard deviation of the resource
distribution by 2.41% compared to the Deep Q-Network (DQN)
algorithm [10] and by 9.90% compared to the Reconfiguration
Energy-Aware Placement (REAP) algorithm [11] in a single time
slot. In the long term, the average acceptance rate of ISFCDAA
is 15.11% higher than the DQN algorithm and 39.57% higher
than the REAP algorithm. ISFCDAA improves the average long-
term profit by 21.47% compared to the DQN algorithm and by
42.92% compared to the REAP algorithm. These results demon-
strate the cost-effectiveness and sustainability of ISFCDAA in
dynamic resource environments.

The remainder of this paper is organized as follows: Section 2
discusses related work on resource adjustment. Section 3 presents the

Computer Networks 242 (2024) 110254Y. Wang et al.
Table 1
Comparison of related works.

Literatures Horizontal
scaling

Vertical
scaling

Migration Consider scaling
cost

Consider distribution
of resources

Methodology

Hawilo et al. [12]
√

– – No No MILP formulation with heuristic solver
Buh et al. [13] –

√

– No No Heuristic solver
Eramo et al. [14] – –

√

Yes No A heuristic based on the Viterbi algorithm
Padhy et al. [11]

√ √ √

Yes No ILP formulation with heuristic solver
Ayoubi et al. [15] – –

√

Yes No MINLP formulation with heuristic solve
Zhang et al. [16] – –

√

Yes Yes(partial) ILP formulation with heuristic solver
Houidi et al. [17]

√ √ √

No No ILP formulation with the Greedy heuristic
Harutyunyan et al. [18]

√ √ √

Yes No ILP formulation with heuristic solver
Chen et al. [19]

√ √ √

No No INLP formulation with heuristic solver

Our proposed
√ √ √

Yes Yes MDP formulation with DDQN

In this table, ‘‘
√

’’ means that this work takes this element into account, while ‘‘−’’ means that it does not.
t
𝑆

target problem. Section 4 introduces the proposed ISFCDAA. Section 5
the analyzes numerical results, and finally we conclude the paper in
Section 6.

2. Related work

In this section, we will present the existing work on dynamic
resource adjustment.

There are many adjustment solutions in the existing work. For
example, a method was proposed in [12] that utilizes horizontal scaling
to minimize VNF downtime and reduce SFC delay. In [13], the authors
effectively utilized multi-core architecture to properly balance network
load and optimize inter-core communication through vertical scaling.
The research [14] reduced the energy consumption of the data center
by migrating VNFs for aggregation. However, researchers only study
individual strategies, and rarely consider the three strategies jointly.
For this reason, the work [11] proposed a heuristic algorithm that
considered three strategies to reduce overhead and energy consump-
tion, but the authors did not consider the distribution of the remaining
resources, which may lead to unbalanced resource utilization.

In the existing work, the goals of dynamic adjustment are also dif-
ferent for each researcher. The objective of [20] is to minimize energy
consumption and reconfiguration costs, but this work was solved under
fixed traffic and limited state–action spaces. The work [15] devised an
availability-aware resource allocation and reconfiguration framework
that focuses on providing the highest availability improvement with
the lowest reconfiguration cost. In [16], a latency-aware migration
strategy was proposed to optimize the physical resource distribution by
migrating the last VNF of the SFC, which alleviated the burden of high-
load nodes to some extent, but it did not consider the balanced resource
distribution from a global perspective. In contrast to these works, we
trade off the balanced resource distribution and the cost of resource
adjustment, offering a fresh perspective. This approach aims to improve
the performance of the network and enabling network operators to
more effectively satisfy user demands.

Furthermore, the existing approaches to resource adjustment
schemes also vary. For instance, in [17], a greedy heuristic algorithm
was proposed to dynamically scale the resources, but the computa-
tional complexity was high when dealing with large-scale networks.
Meanwhile, [18] devised a heuristic algorithm to tackle the scalability
issue of the ILP-based approach that aimed at minimizing the service
provisioning cost for the mobile network operators. Additionally, [19]
implementing in a real-world environment, aimed to minimize the
number of used servers in the network. Unlike existing heuristic meth-
ods, we employ deep reinforcement learning as the basis for the
adjustment algorithm. Traditional methods often rely on empirical rules
and heuristic strategies, while reinforcement learning can enable the
intelligent agent to autonomously explore and learn the best strategy
through the learning. To our knowledge, no prior research has ap-
plied DDQN specifically to address the challenges in dynamic resource
3

adjustment. A comparison of related works is given in Table 1. t
3. System model and problem formulation

In this section, we first describe the problem, then introduce the
system model, notations, and concepts used in this paper, and finally
define the problem formally. For ease of reference, the notations used
in this paper are summarized in Table 2.

3.1. Problem description

After the SFC placement is completed, the requirements of the SFC
continue to change, which may affect the resource consumption of the
physical network and violate the SLA. Therefore, the NFV orchestrator
needs to dynamically manage VNF resources to meet the changing de-
mands. When the resource demands of SFC increase, it causes the CPU
load of some physical servers to increase, which affects the SFC delay
and reduces the QoS. When the resource demands of SFC decrease,
it causes the resource utilization rate of servers to decrease, which in
turn increases the energy consumption of the network. Because network
energy consumption still remains high if servers have not effectively
enter low-power states. Additionally, even when operating at low uti-
lization, servers still consume 70% of their maximum power [21].
Consequently, if VNF on a server has low resource requirements for
an extended period, migrating that VNF and subsequently putting the
server to sleep could enhance overall energy efficiency. Therefore, we
consider three types of strategies to dynamically adjust some instances
on the server: (1) expanding/shrinking the resources of VNF instances,
(2) instantiating new VNF instances, (3) migrating VNF instances.
However, these strategies may incur overheads. When the resource
demands increase, if the server still has enough remaining resources
and the resource distribution is relatively balanced, it is appropriate
to expand the resources of the VNF instance. Besides, the adjustment
overhead is small. If the current server resources are not sufficient
or the resource distribution is unbalanced, we can consider migrating
the VNF instance or instantiating a new instance. However, creating a
new VNF instance may incur a higher adjustment overhead. Similarly,
migration may not only incur rerouting overhead, but also increase
bandwidth consumption. Besides it is necessary to avoid that the mi-
gration affects end-to-end delay of currently executing request sharing
the same VNF instance. Therefore, we propose an effective dynamic
adjustment strategy that trade-off each adjustment strategy.

As shown in Fig. 2(a), there are three requests 𝑆𝐹𝐶1{𝑉 𝑁𝐹1, 𝑉 𝑁𝐹2,
𝑉 𝑁𝐹3}, 𝑆𝐹𝐶2{𝑉 𝑁𝐹1, 𝑉 𝑁𝐹3, 𝑉 𝑁𝐹4}, and 𝑆𝐹𝐶3{𝑉 𝑁𝐹2, 𝑉 𝑁𝐹5} have
been placed on the standard general-purpose servers, each with 10 units
of CPU resources. The three network functions in 𝑆𝐹𝐶1 are placed
on 𝑆𝑒𝑟1, 𝑆𝑒𝑟2 and 𝑆𝑒𝑟3 respectively. The network functions in 𝑆𝐹𝐶2
are hosted on 𝑆𝑒𝑟1, 𝑆𝑒𝑟5 and 𝑆𝑒𝑟4 respectively, where 𝑉 𝑁𝐹1 shares
he instance on 𝑆𝑒𝑟1 with 𝑉 𝑁𝐹1 in 𝑆𝐹𝐶1. The network functions in
𝐹𝐶3 share the instances on 𝑆𝑒𝑟2 and 𝑆𝑒𝑟5, respectively. The data in
he brackets in the figure are the resources occupied by each instance.

Computer Networks 242 (2024) 110254Y. Wang et al.
Fig. 2. Example of dynamic adjustment.
Table 2
Summary of notations.

Notation Definition

𝑁 , 𝐿 The set of physical nodes and the set of physical links, respectively
𝐶𝑢 Computational resources of a node 𝑢

𝐵𝑢𝑣, 𝜏𝑢𝑣 Bandwidth resources, transmission delay of link 𝑙𝑢𝑣 = (𝑢, 𝑣) ∈ 𝐿,
respectively

𝐼 The set of SFC requests

𝑠𝑖, 𝑡𝑖, 𝐷𝑖 The source node, the destination node, and the delay requirement
of 𝑖, respectively

𝐹𝑖 The set of VNFs of request 𝑖
𝑟𝑖𝑗 Computational resources requirement of 𝑉 𝑁𝐹𝑗 of 𝑖
𝑓𝑖,𝑗 The 𝑗th forwarding path of 𝑖
𝑏𝑖 Resources requirement of 𝑖
P𝑚𝑖

The unprocessed forwarding path after 𝑖 migration
𝐶𝑖𝑛𝑠 Cost of instantiating a single VNF

𝑧𝑖𝑗𝑢(𝑡) Binary variable indicates whether or not 𝑉 𝑁𝐹𝑗 of 𝑖 is placed onto
physical node 𝑢 at time slot 𝑡

𝜋𝑓𝑖,𝑗
(𝑢,𝑣)

(𝑡) Binary variable indicates whether or not virtual link 𝑗th of 𝑖 is
mapped onto physical link 𝑙𝑢𝑣 ∈ 𝐿 at time 𝑡

As the demand of 𝑉 𝑁𝐹1 in 𝑆𝐹𝐶2 increases over time, the instance
in 𝑆𝑒𝑟1 is vertical scaled to satisfy the change in demand since the
server has enough resource capacity, as shown in Fig. 2(b). However,
if the demand of 𝑉 𝑁𝐹1 persists for a long time, the node might be
overloaded, leading to performance degradation. In this case, as shown
in Fig. 2(c), a new instance of 𝑉 𝑁𝐹1 should be created on 𝑆𝑒𝑟6, and
𝑆𝐹𝐶2 must be rerouted. At this time, it is necessary to consider not only
whether the resources on the server can be satisfied, but also whether
the delay of the rerouted 𝑆𝐹𝐶2 request is not be violated. Although
this adjustment might generate overhead, the network resources dis-
tribution is more balanced, which generates positive feedback when
the subsequent demands change, such as satisfying more requests. As
shown in Fig. 2(d), 𝑆𝑒𝑟5 has sufficient resources to satisfy the demand
of 𝑉 𝑁𝐹3 in 𝑆𝐹𝐶1, and the request delay could still be satisfied after
migration. So when the demand of 𝑉 𝑁𝐹3 in 𝑆𝐹𝐶1 decreases, the 𝑉 𝑁𝐹3
4

instance in 𝑆𝑒𝑟3 can be migrated to 𝑆𝑒𝑟5, and fully utilize the resources
on 𝑆𝑒𝑟5 to reduce the energy consumption. From this example, it can
be observed that the operator can choose three different solutions
(vertical scaling, horizontal scaling and migration) according to the
changing requirements of the SFC. So our goals are to reduce the
operator’s operational cost and achieve a more balanced distribution
of network resources by determining a suitable adjustment strategy
that simultaneously guarantees the resource requirements and request
delay.

3.2. System model

3.2.1. Physical network
The physical network is an undirected connected graph, denoted by

𝐺 = (𝑁,𝐿) where 𝑁 denotes a set of physical machines which can host
VNF instances and 𝐿 is the set of physical links. The CPU computational
resource of node 𝑢 ∈ 𝑁 is denoted by 𝐶𝑢, and 𝐵𝑢,𝑣 represents the
available bandwidth of the link 𝑙𝑢𝑣 ∈ 𝐿 between node 𝑢 and node 𝑣.
𝜏𝑢𝑣 indicates the transmission delay of the link 𝑙𝑢𝑣 ∈ 𝐿. Each node has
certain CPU resources, which limits the number of requests for shared
VNF instances.

3.2.2. Service function chain
In the model, the set of VNFs is denoted by 𝐹 and the set of

requests is denoted by 𝐼 . For each type of SFC request 𝑖, we generate
the different resource requirement 𝑟𝑖𝑗(𝑗 ⊂ 𝐹) of the same VNF𝑗. Each
request 𝑖(𝑖 ∈ 𝐼) is composed of multiple ordered VNFs, and the VNF
set formed by 𝐹𝑖(𝐹𝑖 ⊂ 𝐹). The request 𝑖(𝑖 ∈ 𝐼) is represented by
a four-tuple

(

𝑠𝑖, 𝑡𝑖, 𝐹𝑖, 𝐷𝑖
)

, where 𝑠𝑖 indicates the source, 𝑡𝑖 indicates
the destination, and 𝐷𝑖 indicates the maximum delay allowed by the
request. The 𝑗th virtual link of request 𝑖 is denoted by 𝑓𝑖,𝑗(𝑓𝑖,𝑗 ∈ 𝑖). 𝑏𝑖
represents the bandwidth of 𝑖.

3.2.3. Cost structure
In this paper, the adjustment cost of SFC is divided into two main

parts: migration cost and instantiation cost. Below are the definitions
of these two costs.

Migration cost: When the VNF instance on the server is migrated

to another server, it will spend some costs 𝑐𝑚𝑖𝑔(𝑡). Similar to [16],

Computer Networks 242 (2024) 110254Y. Wang et al.

𝑅

w

𝑠

𝑧

𝜋

w
r
o
l
0

T

P
p
g
e
a
p
I
w
W
s
l
A
w
a
N
o
a
S

4

m

𝑐𝑚𝑖𝑔(𝑡) = 𝐶𝑏 ⋅ 𝑏𝑖 ⋅
|

|

|

𝑃𝑚𝑖
(𝑡)||
|

is the additional cost of processing the total
amount of unprocessed packets for the request 𝑖, where 𝐶𝑏 represents
the cost of using unit bandwidth on the physical link, 𝑏𝑖 represents
the bandwidth required to process the packets, and |

|

|

𝑃𝑚𝑖
(𝑡)||
|

denotes
the quantity of new links containing unprocessed packets of 𝑖 should
be transmitted after migration. For example, there is a SFC which
forwarding path is (𝑆𝑒𝑟1→𝑆𝑒𝑟2→𝑆𝑒𝑟3), and its forwarding path after
migration is (𝑆𝑒𝑟1→𝑆𝑒𝑟4→𝑆𝑒𝑟5→𝑆𝑒𝑟3), so |

|

|

𝑃𝑚𝑖
(𝑡)||
|

= 3. And it can be
defined as Eq. (2), where 𝜋

𝑓𝑖,𝑗
𝑢,𝑣 (𝑡) is a binary variable, indicating whether

or not virtual link 𝑗th of 𝑖 is mapped onto physical link 𝑙𝑢𝑣 ∈ 𝐿 at time
t. Therefor the total migration cost is modeled in Eq. (1).

𝐶𝑚𝑖𝑔(𝑡) =
∑

𝑖∈𝐼
𝑐𝑚𝑖𝑔(𝑡) =

∑

𝑖∈𝐼
𝐶𝑏 ⋅ 𝑏𝑖 ⋅

|

|

|

𝑃𝑚𝑖
(𝑡)||
|

(1)

|

|

|

𝑃𝑚𝑖
(𝑡)||
|

=
∑

𝑓𝑖,𝑗∈𝑖

∑

(𝑢,𝑣)∈𝐿
(𝜋

𝑓𝑖,𝑗
𝑢,𝑣 (𝑡) − 𝜋

𝑓𝑖,𝑗
𝑢,𝑣 (𝑡 − 1)) ⋅ 𝜋

𝑓𝑖,𝑗
𝑢,𝑣 (𝑡) (2)

Instantiation cost: Same as [11], we define the instantiation cost
𝐶𝑑𝑒𝑙𝑜𝑝𝑦(𝑡) as the total cost of VNF instances created at time slot 𝑡.
Therefore, we define 𝐶𝑑𝑒𝑙𝑜𝑝𝑦(𝑡) as:

𝐶𝑑𝑒𝑙𝑜𝑝𝑦(𝑡) =
∑

𝑖∈𝐼

∑

𝑗∈𝐹𝑖

∑

𝑢∈𝑁
𝐶𝑖𝑛𝑠 ⋅ 𝑧𝑖𝑗𝑢(𝑡) (3)

where 𝐶𝑖𝑛𝑠 is the cost of instantiating a single VNF. 𝑧𝑖𝑗𝑢(𝑡) is a binary
variable, and it recorded as 1 when 𝑉 𝑁𝐹𝑗 of 𝑖 is instantiated on node
𝑢 at time slot t.

Therefore, the total cost can be defined as:

𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) = 𝛼1 ⋅ 𝐶𝑚𝑖𝑔(𝑡) + 𝛼2 ⋅ 𝐶𝑑𝑒𝑙𝑜𝑝𝑦(𝑡) (4)

where 𝛼1 and 𝛼2 are constant coefficients between costs.

3.3. Problem formulation

This section formally proposes a mathematical definition of the SFC
dynamic adjustment problem. Firstly, relevant constraints are put on
the problem. Secondly, the optimization goal of the problem is clarified.

3.3.1. Constraints
An effective adjustment strategy must ensure that the following

conditions are satisfied.
Since CPU resources on each server are limited, each server can only

support a limited number of VNFs. Therefore, we have
∑

𝑖∈𝐼

∑

𝑗∈𝐹𝑖

𝑧𝑖𝑗𝑢(𝑡) ⋅ 𝑟𝑖𝑗 ≤ 𝐶𝑢,∀𝑢 ∈ 𝑁 (5)

At the same time, the forwarding path bandwidth allocated to the
corresponding SFC cannot exceed the bandwidth resource of the actual
physical link. Hence, we have the constraint below.
∑

𝑖∈𝐼

∑

𝑓𝑖,𝑗∈𝑖
𝑏𝑖 ⋅ 𝜋

𝑓𝑖,𝑗
𝑢,𝑣

(𝑡) ≤ 𝐵𝑢,𝑣,∀ (𝑢, 𝑣) ∈ 𝐿 (6)

Similar to [22], each VNF in SFC can only be placed on a single
physical node and cannot be served by multiple physical nodes. Thus,
we have
∑

𝑢∈𝑁
𝑧𝑖𝑗𝑢(𝑡) ≤ 1,∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐹𝑖 (7)

In addition, the total delay of the transmission path should be less
than the delay required by the request. Thus, we have

𝑑𝑖 ≤ 𝐷𝑖,∀𝑖 ∈ 𝐼 (8)

where the transmission delay 𝑑𝑖 of request 𝑖 is defined as follows:

𝑑𝑖 =
∑ ∑

𝜏𝑢𝑣 ⋅ 𝜋
𝑓𝑖,𝑗
𝑢,𝑣

(𝑡) (9)
5

𝑓𝑖,𝑗∈𝑖 (𝑢,𝑣)∈𝐿 p
3.3.2. Objective
To meet the changing demands of SFC, it is necessary to dynami-

cally adjust the resources of physical nodes. How to meet user needs,
reduce the cost of long-term dynamic adjustment, and make resource
distribution more reasonable is what needs to be addressed in this
paper.

The resource distribution is similar to the work [23], we use the
standard deviation 𝑅𝐷 to measure the distribution of physical re-
sources. 𝑅𝐷 can be calculated as:

𝑅𝐷 =

√

√

√

√
1

|𝑁|

|𝑁|

∑

𝑢=1
(𝑅𝑁𝑢

𝑎𝑣𝑖 − 𝑅𝑁𝑎𝑣𝑖)
2
+

√

√

√

√
1
|𝐿|

|𝐿|
∑

𝑙=1
(𝑅𝐿𝑙

𝑎𝑣𝑖 − 𝑅𝐿𝑎𝑣𝑖)
2

(10)

where 𝑅𝑁𝑎𝑣𝑖 is the average value of the available resources of nodes,
𝑁𝑢

𝑎𝑣𝑖 is the available resources of a single node. 𝑅𝐿𝑎𝑣𝑖 is the aver-
age value of available resources of links, and 𝑅𝐿𝑙

𝑎𝑣𝑖 is the available
resources of a single link. 𝑅𝑁𝑢

𝑎𝑣𝑖 can be calculated by Eq. (11). 𝑅𝐿𝑙
𝑎𝑣𝑖

can be calculated by Eq. (12)

𝑅𝑁𝑢
𝑎𝑣𝑖 = 𝐶𝑢 −

∑

𝑖∈𝐼

∑

𝑗∈𝐹𝑖

𝑧𝑖𝑗𝑢(𝑡) ⋅ 𝑟𝑖𝑗 (11)

𝑅𝐿𝑙
𝑎𝑣𝑖 = 𝐵𝑢,𝑣 −

∑

𝑖∈𝐼

∑

𝑓𝑖,𝑗∈𝑖

𝑏𝑖 ⋅ 𝜋
𝑓𝑖,𝑗
(𝑢,𝑣) (𝑡) (12)

And the total long-term cost of dynamic adjustment within 𝑇 time
slots can be defined as:

𝐶 = lim
𝑇→∞

1
𝑇

𝑇
∑

t=0
𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) (13)

here 𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) can be calculated from Eq. (4).
Therefore the optimization objective can be organized as:

min𝐶 + 𝑅𝐷

.𝑡 (5)–(9)

𝑖𝑗𝑢(𝑡) ∈ {0, 1} ,∀𝑖 ∈ 𝐼,∀𝑗 ∈ 𝐹𝑖,∀𝑢 ∈ 𝑁,∀𝑡 ∈ 𝑇
𝑓𝑖,𝑗
(𝑢,𝑣) (𝑡) ∈ {0, 1} ,∀𝑓𝑖,𝑗 ∈ 𝑖,∀(𝑢, 𝑣) ∈ 𝐿,∀𝑡 ∈ 𝑇

(14)

here 𝑧𝑖𝑗𝑢(𝑡) is a binary variable, which equals 1 when the 𝑗th VNF of
equest 𝑖 is instantiated on physical node 𝑢 at time slot t, and value 0
therwise. 𝜋𝑓𝑖,𝑗

(𝑢,𝑣) (𝑡) is a binary variable, which equals 1 when the virtual
ink 𝑗th of 𝑖 is mapped onto physical link 𝑙𝑢𝑣 ∈ 𝐿 at time t, and value

otherwise.

heorem 1. Our optimization problem is NP-hard.

roof. The Virtual Network Embedding (VNE) problem, which the
rimary objective is to allocate the virtual graph onto the physical
raph, ensuring that the total capacities of virtual nodes/links do not
xceed the capacities of their corresponding physical nodes and links, is
cknowledged to be NP-hard [24]. Thus, simplifying the optimization
roblem to the VNE problem allows us to demonstrate its NP-hardness.
n our optimization problem, there is a physical network 𝐺 = (𝑁,𝐿),
here 𝑁 is the set of physical nodes, and 𝐿 is the set of physical links.
e aim to identify an adjustment strategy characterized by two deci-

ion variables, 𝑧𝑖𝑗𝑢(𝑡) and 𝜋
𝑓𝑖,𝑗
(𝑢,𝑣) (𝑡), ensuring compliance with node and

ink resource constraints as denoted by Eqs. (5) and (6), respectively.
mong them, SFC can be regarded as a virtual graph. Additionally,
ithin the context of VNE, the embedding cost, which pertains to the
mount of consumed substrate resources for the embedding of Virtual
etworks, serves as its objective [24]. Accordingly, we can reduce our
bjective function to consider only the adjustment cost in Eq. (14). By
dopting this approach, our optimization problem is reducible to VNE.
ince VNE is NP-hard, our optimization problem is NP-hard too.

. The policy of dynamic adjustment

However, solving the adjustment policy under multi-objectives and
ulti-constraints is an NP-hard problem. So in this section, the solution

rocess is modeled as MDP and solved using DDQN.

Computer Networks 242 (2024) 110254Y. Wang et al.
4.1. Markov decision process

MDP is a mathematical framework for describing and solving se-
quential decision problems. In reinforcement learning, MDP is widely
used to model environments and formulate strategies of intelligent
agent, then can learn the best strategy by interacting with the envi-
ronment [25]. MDP can be represented by a quintuple (𝑆,𝐴, 𝑇𝑃 ,𝑅, 𝛾),
where 𝑆 is a set of state space, 𝐴 is a set of action space, 𝑇𝑃 is the state
transition probability, 𝑅 is the reward, and 𝛾 is the discount factor.

State Space: It indicates the specific state of the network at a
certain moment. The state space contains two types of information
in the ISFCDAA problem. It can be defined as Eq. (15), where 𝑢(𝑡) =
[

𝑢𝑛1 (𝑡),… , 𝑢𝑛
|N|

(𝑡)
]

represents the vector of remaining resources on each

physical server at time t, 𝜅(𝑡) =
[

𝜅𝑣1 (𝑡),… , 𝜅𝑣
|𝐹 |

(𝑡)
]

represents the vector
indicating the successful placement of each type of VNF on the servers
at time t. 𝜅𝑣𝑥 (𝑡) =

[

𝜅𝑣𝑥
𝑛1 (𝑡),… , 𝜅𝑣𝑥𝑛

|𝑁|

(𝑡)
]

represents the mapping vector of
VNF 𝑣𝑥 on all servers at time t, where 𝜅𝑣𝑥

𝑛𝑖 (𝑡) ∈ {0, 1} indicates whether
VNF 𝑣𝑥 is placed on server 𝑛𝑖 at time t. |N| represents the number
of severs, |𝐹 | represents the number of VNF types, so the dimensions
of the space is |𝑁| + |𝑁| ∗ |𝐹 |. The integration of these information
provides a more comprehensive description of the current state, which
is important for decision-making on resource adjustment.

𝑆(𝑡) = {𝑢(𝑡), 𝜅(𝑡)} (15)

Action Space: The agent selects the best adjustment strategy for the
SFC of resource demand based on the current state 𝑆(𝑡), so the action
in the ISFCDAA problem is an |𝐼|-dimensional vector, it can be defined
as:

𝐴(𝑡) =
{

𝑎1(𝑡),… , 𝑎
|𝐼|(𝑡)

}

(16)

where 𝑎𝑖(𝑡) represents the scaling strategy chosen by SFC i for resource
adjustment at time t. It should be noted that after selecting the action,
the successful adjustment must satisfy the constraints Eqs. (5)–(9).

Transition Probability: It means that the probability distribution
of the network transitioning from one state to another after executing
an action in a given state. In this paper, the state transition probability
is unknown because the transition to the next state depends not only
on the chosen action, but also on external factors.

Reward: In MDP, each state transition is accompanied by a reward
signal, which represents the evaluation of agent on that transition. The
reward can be obtained immediately, it can be defined as:

𝑟(𝑡) =
{

−𝐶𝑡𝑜𝑡𝑎𝑙(𝑡) − 𝑅𝐷(𝑡), succeed
−𝜎, otherwise (17)

In Eq. (17), we consider that a successful scaling operation is
performed without violating constraints Eqs. (5)–(9). In our adjustment
problem, its goal is to minimize the long-term cost and the standard
deviation of network resources. But the goal of agent is to maximize
the long-term reward, so the reward can be defined as the negative
value of the total cost and resource standard deviation. In addition, a
penalty can be set −𝜎, where 𝜎 is much larger than the total cost and
resource standard deviation, which means the penalty for SFC adjust-
ment failure. So it makes that the agent can obey the constraints while
keeping the objective. This transformation allows us to consolidate
multiple objectives into a single reward formula. Unlike the approach
in [26], which may handle multiple objectives separately, our strategy
streamlines the learning process for the agent by presenting a unified
reward signal. This simplification is motivated by the desire to enhance
the learning efficiency of the agent in navigating the complex trade-offs
between cost and resource distribution. By framing the problem in this
way, we aim to provide the agent with a clear and unified objective
that facilitates effective learning in the pursuit of optimal adjustments.
6

In reinforcement learning problem, the goal of agent is usually to
maximize long-term cumulative rewards, not just immediate rewards.
The cumulative reward value at time slot t can be defined as:

𝑅(𝑡) = 𝑟(𝑡) + 𝛾 ⋅ 𝑟(𝑡 + 1) + 𝛾2 ⋅ 𝑟(𝑡 + 2) +⋯ =
∞
∑

𝑛=0
𝛾𝑛 ⋅ 𝑟(𝑡 + 𝑛) (18)

where 𝛾 is the discount factor, and 𝑛 is the number of iterations.

4.2. Deep reinforcement learning-based VNF dynamic adjustment approach

MDP is usually solved by using dynamic programming (DP) or deep
reinforcement learning (DRL) [27]. However, when the DP method
is applied to problems with a large state space, it may lead to a
dimensional disaster, requiring the storage and computation of a large
number of states and policies. In addition, the DP method needs to
know the complete model information in advance. On the other hand,
the model-free nature of the DRL method makes it more suitable for
problems with a large state space, where the complete model does
not need to be known in advance. It can learn the optimal policy
by updating Q-values based on the collected experiences [28]. In the
adjustment problem, the SFC demand changes randomly, the state tran-
sition probability cannot be determined, and it has a large-dimensional
state space and discrete action space. Therefore, we use a DRL method
to solve it.

(1) Related Background
DQN: DQN, proposed by DeepMind in 2013 [10], is a deep rein-

forcement learning algorithm that is highly relevant to solving MDP
problems. Traditional reinforcement learning methods face challenges
when dealing with problems with large state spaces and continuous
action spaces, as they need to store and update the 𝑄-value of each
state–action pair. While DQN exploits deep neural network to approx-
imate the parameterized value function Q, representing the expected
cumulative reward given a state and action. There are two networks in
DQN: the main network with network parameters denoted as 𝜃, and the
target network with network parameters denoted as 𝜃′. DQN calculates
the 𝑄(𝑆𝑡, 𝑎; 𝜃) of each action through the deep neural network in the
main network. The action 𝑎𝑡 can be selected by using the 𝜀-greedy
strategy which guarantees a certain amount of exploration. Thus, we
can obtain:

𝑎𝑡 =

{

arg
𝑎

max𝑄(𝑆𝑡, 𝑎; 𝜃), 1 − 𝜀

𝑟𝑎𝑛𝑑𝑜𝑚, 𝜀
(19)

Executing the action 𝑎𝑡 may get the reward 𝑟, and the state turns to
𝑆𝑡+1. Through this interaction, an experience (𝑆𝑡, 𝑎𝑡, 𝑆𝑡+1, 𝑟) is obtained.
DQN employs experience replay, randomly selecting a batch of experi-
ences for training, to stabilize the training process. During the training,
𝑆𝑡+1 is input into the target network, and we obtain 𝑄(𝑆𝑡+1, 𝑎𝑡+1; 𝜃′) for
each action. We select the max𝑎𝑡+1 𝑄(𝑆𝑡+1, 𝑎𝑡+1; 𝜃′), and then we can get
the real value

∧
𝑦 which can be defined as Eq. (20).

∧
𝑦 = 𝑟 + 𝛾 ⋅max

𝑎𝑡+1
𝑄(𝑆𝑡+1, 𝑎𝑡+1; 𝜃′) (20)

where 𝛾 is the discount factor.
With this real value, the loss can be computed (Eq. (21)) and used

to update the parameters of the neural network, allowing the network
to gradually learn the optimal 𝑄 function estimate.

𝐿𝑜𝑠𝑠 = (
∧
𝑦 − max

𝑎𝑡
𝑄(𝑆𝑡, 𝑎𝑡; 𝜃))

2
(21)

Double DQN: Although DQN performs well on many problems, it
still has some problems, such as overestimation. In traditional DQN, a
single neural network is used to estimate the 𝑄 values of all actions
simultaneously. This can lead to overestimation of certain actions,
and causing the learned policy to be biased towards actions with
higher value. To address this issue, DDQN was proposed by DeepMind
in 2015 [29]. DDQN employs two independent neural networks to

Computer Networks 242 (2024) 110254Y. Wang et al.
Fig. 3. The training process of DDQN.

estimate the optimal action and its corresponding 𝑄 value. Among
them, the target network is used to select the optimal action, and
the main network calculates the 𝑄 value of this action. The training
process of DDQN is shown in Fig. 3. If (𝑆𝑡, 𝑎𝑡, 𝑆𝑡+1, 𝑟) taken from the
experience pool, then the 𝑄(𝑆𝑡, 𝑎𝑡; 𝜃) can be obtained from the main
network. When the next state 𝑆𝑡+1 inputs to the main network, the
action 𝑎𝑡+1 corresponding to the max𝑎𝑡+1 𝑄(𝑆𝑡+1, 𝑎𝑡+1; 𝜃) can be selected.
We input 𝑆𝑡+1 to the target network, and we can obtain 𝑄(𝑆𝑡+1, 𝑎𝑡+1; 𝜃′).
Thus, the DDQN actual value can be calculated as Eq. (22), while the
predicted value is 𝑄(𝑆𝑡, 𝑎𝑡; 𝜃). We use both of them to perform error
back-propagation. The parameter of the main network is updated as
Eq. (23). After several updates, the parameter of the main network is
gradually synchronized to the target network.
∧
𝑦 = 𝑟 + 𝛾 ⋅𝑄(𝑆𝑡+1, 𝑎𝑡+1; 𝜃′) (22)

𝜃 ← 𝜃 − [
∧
𝑦 −𝑄(𝑆𝑡, 𝑎𝑡; 𝜃)]∇𝜃𝑄(𝑆𝑡, 𝑎𝑡; 𝜃) (23)

(2) Intelligent Service Function Chain Dynamic Adjustment Algorithm
Since DDQN has strong stability and excellent performance in solv-

ing MDP, the DDQN-based ISFCDAA is proposed to address the chal-
lenges in SFC adjustment. ISFCDAA uses DDQN to dynamically adjust
the allocation of VNF resources based on SFC demand. Considering
the continuous changes in resource requirements and the need to
maintain SLA, ISFCDAA is designed to optimize resource distribution
while ensuring high-quality service delivery. We have introduced the
mathematical model of the adjustment algorithm and discussed its key
components, including state spaces, action selection, state transition
probability, and reward computation. Furthermore, we have detailed
the training process of the DDQN, which involves interacting with the
environment and utilizing experience replay to improve data efficiency
and enhance the learning process. Next we look at the details of
ISFCDAA.

As shown in Algorithm 1, lines 1 to 22 describe the training process
of ISFCDAA. At the beginning of the algorithm, an experience pool 𝐸 is
initialized to store (𝑆𝑡, 𝑎𝑡, 𝑆𝑡+1, 𝑟) (line 1). At the same time, we initialize
the parameters of the main network and the target network (lines 2–
3). Then ISFCDAA is trained for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑛𝑢𝑚 times, for each episode, first
initializing the state and then doing the following steps:

1. The 𝜀-greedy strategy is used to select an action 𝐴 in the main
network (line 7).

2. Based on the selected action, a specific sub-algorithm (Algorithm
2, Algorithm 3, or Algorithm 4) is called to adjust the SFC (lines
8–17).

3. After adjusting, we can obtained the reward 𝑟 which is computed
using Eq. (17), and the next state 𝑆𝑡+1. Then we store them in
7

the experience pool 𝐸 (line 18).
4. After accumulating enough experiences in the pool, the algo-
rithm randomly samples a batch of samples and uses the gradient
descent method to update the parameter of the main network,
like Eq. (23) (line 19).

5. After updating 𝑌 times, the parameter of the main network
is copied to the target network to stabilize and improve the
learning process (line 20).

Once the training is complete, the trained network model is saved.
The SFC adjustment strategy 𝜋 is obtained by inputting SFCs into the
main network (line 23).

Algorithm 1: Intelligent Service Function Chain Dynamic
Adjustment Algorithm

Input: Penalty value −𝜎, initial exploration rate 𝜀, discount
factor 𝛾, learning rate, update times 𝑇 , SFCs

Output: Adjustment Policy 𝜋
1 Initialize experience pool 𝐸;
2 Initialize the parameter of the main network 𝜃;
3 Initialize the parameter of the target network 𝜃′ = 𝜃;
4 for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ← 1 to 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑛𝑢𝑚 do
5 Initialize state space 𝑠𝑡𝑎𝑡𝑒 = {𝑢1, ..., 𝑢𝑁 ; 𝜅1, ..., 𝜅𝑀};
6 for 𝑖 ← 1 to 𝑠𝑓𝑐𝑛𝑢𝑚 do
7 Take the 𝜀-greedy strategy to select action 𝐴 in the

main network;
8 if A == 0 then
9 Call Algorithm 2;
10 else
11 if A == 1 then
12 Call Algorithm 3;
13 end
14 if A == 2 then
15 Call Algorithm 4;
16 end
17 end
18 Get reward 𝑟 and next state 𝑆𝑡+1, and store

(𝑆𝑡, 𝑎𝑡, 𝑆𝑡+1, 𝑟) in the experience pool 𝐸;
19 Randomly sample a small batch from the experience

pool 𝐸, and update the main network parameter 𝜃
using gradient descent;

20 Copy the main network parameter 𝜃 to the target
network 𝜃′ after updating 𝑌 times;

21 end
22 end
23 Get the SFC adjustment strategy 𝜋 through the main network;

During the execution of the action, if the selected action involves
adjusting the resources of the VNF at the current node, Algorithm 2
is employed. If the demand of the VNF 𝑟𝑖𝑗 is less than the remaining
resources 𝐶𝑢.𝑎𝑣𝑖 on the current node, the resource adjustment is carried
out (line 3). The state, reward, and policy after adjusting are then
returned (line 8). However, if the adjustment requires more resources
than what is available on the current node, the adjustment process fails
(line 5).

When the selected action involves creating an instance of the VNF
on a new node, as shown in Algorithm 3, the algorithm first searches
for candidate nodes which meet the resource requirements, and then
sorts them in descending order according to the remaining resources
of the nodes (line 1). Then we screen the candidate nodes. If the
link resources are insufficient or the delay constraint is violated after
node instantiation, the node should be removed. Otherwise, the length
of forwarding path after instantiation will be recorded (lines 3–8). If
the list of candidate node is empty, the adjustment fails (lines 9–10).
Conversely, it indicates a successful adjustment. The policy with the
shortest forwarding path and the reward are returned (line 12).

Computer Networks 242 (2024) 110254Y. Wang et al.

t
i

t

5

t
p
b
e
s
w

5

G
E
b
j
t
i
a
c
l

p
S
T

n
l
1
D
u
l
o
t
d
t
c
i
s
s

Algorithm 2: Scale up
Input: SFCs
Output: Adjustment result 𝜋𝑖

1 for 𝑗 in 𝐹𝑖 do
2 if 𝑟𝑖𝑗 < 𝐶𝑢.𝑎𝑣𝑖 then
3 Expand/shrink instance resources on the current node;
4 else
5 Return state, −𝜎, failure, 𝜋𝑖;
6 end
7 end
8 Return state, 𝑟, success, 𝜋𝑖;

Algorithm 3: Instantiate VNF
Input: SFCs
Output: Adjustment result 𝜋𝑖

1 Find the candidate nodes 𝐶𝑎𝑛𝑑𝑖𝑎_𝑛𝑜𝑑𝑒 that satisfy VNF
resources and have no identical instances, and sort them in
descending order of remaining resources;

2 for 𝑛𝑜𝑑𝑒 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒 do
3 if the link resource and delay are satisfied then
4 Record forwarding path;
5 else
6 Remove the candidate node;
7 end
8 end
9 if 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒 == NULL then
10 Return state, −𝜎, failure, 𝜋𝑖;
11 else
12 Return state, 𝑟, success, 𝜋𝑖;
13 end

When the selected action involves migrating the VNF, except that
he candidate node in Algorithm 4 is to find a node with the same
nstance, the other process is the same as Algorithm 3.

Algorithm 4: Migrate VNF
Input: SFCs
Output: Adjustment result 𝜋𝑖

1 Find the candidate nodes 𝐶𝑎𝑛𝑑𝑖𝑎_𝑛𝑜𝑑𝑒 that satisfy VNF
resources and have the same instance, and sort them in
descending order of remaining resources;

2 for 𝑛𝑜𝑑𝑒 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒 do
3 if the link resource and delay are satisfied then
4 Record forwarding path;
5 else
6 Remove the candidate node;
7 end
8 end
9 if 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒_𝑛𝑜𝑑𝑒 == NULL then
10 Return state, −𝜎, failure, 𝜋𝑖;
11 else
12 Return state, 𝑟, success, 𝜋𝑖;
13 end

(3) Complexity Analysis
The time complexity of Algorithm 2 is O(|

|

𝐹𝑖
|

|

), where |

|

𝐹𝑖
|

|

represents
the number of VNFs in each service request. The time complexity of
Algorithm 3 and Algorithm 4 is both O(|𝑁|), where |𝑁| represents the
number of physical nodes. O(|

|

𝑑𝑖𝑛||⋅||𝑑𝑜𝑢𝑡||) represents the time complexity
of the fully connected network, where |

|

𝑑𝑖𝑛|| is the input dimension
| |
8

and
|

𝑑𝑜𝑢𝑡| is the output dimension. Therefore, the time complexity of p
Table 3
Network parameters.

Parameters Value

Number of nodes 17
Number of links 26
Number of VNF 6
Capacity of nodes (30,50)
Bandwidth of links 10 Gbps
Unit delay of links 1 ms
Cost coefficient 𝛼1 = 1, 𝛼2 = 1

Table 4
Parameters of SFC.

Network service SFC Bandwidth Delay

Web service NAT-FW-TM-WOC-IDS 100 kbps 500 ms
VoIP NAT-FW-TM-FW-NAT 64 kbps 100 ms
Video streaming NAT-FW-TM-WOC-IDS 100 kbps 500 ms

Algorithm 1 is O(𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑛𝑢𝑚 ⋅|𝐼|⋅||𝐹𝑖
|

|

⋅|𝑁|

2 ⋅|
|

𝑑𝑖𝑛||⋅||𝑑𝑜𝑢𝑡||), where |𝐼| denotes
he number of requests, 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑛𝑢𝑚 represents the times of training.

. Experimental results and discussion

In this section, we perform simulation experiments based on Py-
orch. Firstly, we discuss the simulation setup used to evaluate the
erformance of our proposed ISFCDAA. Secondly, we introduce two
aselines and four evaluation indicators. Finally, we demonstrate the
ffectiveness of ISFCDAA in minimizing adjustment consumption, re-
ource balancing and long-term profits by comparing its performance
ith the other two benchmark algorithms.

.1. Simulation setup

The physical network used in the experiment is based on the Nobel-
ermany topology from SDNlib [9]. It consists of 17 nodes and 26 links.
ach CPU resource is initialized within the range of (30, 50), and the
andwidth of the physical link is set to 10 Gbps. The delay between ad-
acent physical nodes is proportional to the physical distance between
hem [11], and the unit delay for each link is 1 ms. When the constraint
s violated, we set the penalty parameter 𝜎 = 10000. The cost of resource
djustment is calculated using a linear function, and the cost correlation
oefficients are both to 1. The parameters of the substrate network are
isted in Table 3

Under a single slot, we assume that there are already some SFCs
laced in the network by using the algorithm in [30]. For generating
FCs, we have considered three real world requests [11] as shown in
able 4.

In this paper, we use Pytorch to build a 3-layer fully connected
etwork, and its main parameters are shown in Table 5. The input
ayer is same as the state dimension, and the hidden layer contains
28 neurons that are activated by Rectified Linear Unit (ReLU). In
DQN, the role of Greedy Exploration is to balance exploration and
tilization. However, if we only use it, the algorithm may fall into a
ocal optimal solution and cannot find a better solution. Therefore, in
rder to ensure the exploratory nature of the algorithm, we introduce
he 𝜀-greedy strategy, with an initial exploration rate of 0.9. It will
ecrease as 𝜀(𝑡 + 1) = max(𝜀min, 𝜀(𝑡) − 𝑑𝑒𝑐𝑎𝑦𝑟𝑎𝑡𝑒). In order to improve
he sample utilization during the learning process and reduce the
orrelation between continuous samples, the size of the memory pool
s set to 600. And we adopt the Adam optimizer, with a learning rate
et to 0.015. A batch size set to 32. In addition, in order to improve the
tability and reduce the deviation of the target value, we set the update

eriod is to 200.

Computer Networks 242 (2024) 110254Y. Wang et al.

5

t

Table 5
Hyper parameters of ISFCDAA.

Parameters Value

Penalty parameter 𝜎 10 000
Initial exploration ratio 𝜀(𝑡) 0.9
The minimum exploration ratio 𝜀 0.05
Decay rate 0.005
Input layer 119
Batch size 32
Discount factor 0.95
Replay memory size 600
Optimizer Adam with learning rate 0.015
Target network update period 200

5.2. Baseline

To evaluate the improvements and performance advantages of our
ISFCDAA algorithm in a similar context, we compare it with the fol-
lowing two benchmark algorithms:

• Deep Q-Network(DQN): Based on the problem model of this
paper, DQN is used to solve it;

• REAP [11]: A heuristic algorithm proposed to address the VNF
reconfiguration problem in virtualized data centers. The goal of
REAP is to minimize energy consumption and reconfiguration
overheads in NFV infrastructure, considering scale up, scale out,
and migration as reconfiguration solutions

.3. Evaluation indicators

Similar to the work [23], we set up four evaluation indicators.
Physical resources distribution: Measure the balance of physical

resource distribution. It can be obtained by Eq. (10).
Total cost: The total cost spent on adjusting the SFC in 𝑇 time slots,

which can be obtained by Eq. (13). 𝐶𝑏 is set to 2 units and 𝐶𝑖𝑛𝑠 is set
o 5 units.
Acceptance rate: The request acceptance rate in 𝑇 time slots can

be defined as:

𝐴𝐶(𝑇) =
∑𝑇

𝑡=0 𝐴𝐶𝑠𝑢𝑐 (𝑡)
∑𝑇

𝑡=0 |𝐼|
(24)

where |𝐼| is the number of SFC whose resources change, and 𝐴𝐶𝑠𝑢𝑐 (𝑡)
is the number of SFC that be satisfied at time slot t.

Long-term profit: The total profit earned by the network operator
for serving requests in 𝑇 time slots, which can be defined as:

𝑃𝑟𝑜(𝑇) = ∫

𝑇

𝑡=0

∑

𝑖∈𝐼
(𝐵𝑒𝑛𝑐𝑝𝑢

∑

𝑗∈𝐹𝑖

𝑟𝑖𝑗 + 𝐵𝑒𝑛𝑏𝑤
∑

𝑓𝑖,𝑗∈𝑖

𝑏𝑓𝑖,𝑗) (25)

where 𝐵𝑒𝑛𝑐𝑝𝑢 is the revenue per CPU resource, and 𝐵𝑒𝑛𝑏𝑤 is the revenue
per bandwidth resource. Both of them are set to 1.

5.4. Simulation results and analysis

(1) Experiment1—Performance with different number of SFCs
First of all, we use three algorithms to dynamically adjust the

resources of different numbers of SFCs in a single time slot. As shown
in Fig. 4, the proposed ISFCDAA achieves the most optimal resource
distribution after adjusting resources under various numbers of SFCs.
While the effect of DQN is slightly inferior to ISFCDAA, the resource
distribution after applying REAP is the worst. Specifically, the mean
standard deviation of the resource distribution of ISFCDAA is 2.41%
lower than that of DQN and 9.90% lower than that of REAP. As shown
in Fig. 5, under 50 SFCs, the standard deviation of resource distribution
of ISFCDAA is 6.11% lower than that of DQN and 15.47% lower than
that of ISFCDAA.
9

Fig. 4. Physical resources distribution.

Fig. 5. Physical resources distribution with 50 SFCs.

However, as shown in Fig. 6, the adjustment cost of the algorithm
in this paper is slightly higher than that of the REAP algorithm. When
the number of SFCs increases to 20, the total cost of the ISFCDAA
algorithm becomes lower than that of DQN but higher than that of
REAP. On average, the total cost of ISFCDAA is 14.29% higher than
REAP and 5.14% lower than DQN. This indicates that during the
resource adjustment process, the ISFCDAA algorithm requires a higher
cost to achieve the optimal resource distribution.

In this paper, our total cost includes instantiation cost and migration
cost. As shown in Figs. 7 and 8, the ISFCDAA algorithm chooses two
adjustment schemes: creating new instances and migration, which are
relatively balanced, so that resource distribution is more effective.
However, the REAP algorithm prefers to perform VNF instantiation
which involve relatively little reconfiguration overhead, aligning with
the experimental results of the study [11]. In pursuit of balanced
resource distribution, the ISFCDAA algorithm might opt for strategies
with slightly higher adjustment costs during the adjustment process.
Therefore, almost all of the costs of ISFCDAA are higher than those of
REAP.

(2) Experiment2—Long-term Performance
Since ISFCDAA can achieve the optimal resource distribution in a

single time slot, but the cost is slightly higher than the benchmark
algorithm REAP. In order to further verify the effectiveness of ISFCDAA,
we compare the SFC acceptance rate of the three algorithms in 35

time slots. Among them, 20 SFCs generate resource changes in each

Computer Networks 242 (2024) 110254Y. Wang et al.
Fig. 6. Total cost.

Fig. 7. Instantiation cost.

Fig. 8. Migration cost.

time slot. As shown in Fig. 9, the ISFCDAA demonstrates superior
adaptability to changes in SFC resources, achieving a higher acceptance
rate through resource adjustment. On average, the acceptance rate of
ISFCDAA is 15.11% higher than that of DQN and 39.57% higher than
that of REAP. Compared with REAP, DQN performs better. Although it
10
Fig. 9. Acceptance rate.

is not as good as DDQN, it can still adapt to the change of SFC resources
to some extent and achieve a higher acceptance rate. Besides, the REAP
algorithm performs poorly on SFCs with significant resource changes
and cannot meet its resource requirements. Because the resource distri-
bution of REAP is the worst, it cannot flexibly adapt to large resource
changes. When the subsequent SFC requirements change, the remaining
physical network resources are uneven. As a result, even if the SFC
wants to migrate or instantiate a new VNF, its QoS cannot be satisfied,
leading to a poor acceptance rate.

As shown in Fig. 10, the total cost of REAP is the lowest in the
first two time slots, and then gradually increases, even surpassing the
other two algorithms. After the fifth time slot, the total cost of REAP
drops suddenly, and then remains at lower level. As for why the total
cost of REAP in Fig. 10 reaches to zero, it is because, as indicated by
Figs. 3, 4, and 6, REAP incurs the lowest cost during the reconfiguration
process, but with the highest standard variance in resource distribution.
This suggests that REAP leans more towards cost control, neglecting
resource distribution and resulting in fragmented resources on each
node. Over multiple time slots, as SFCs resources change, subsequent
adjustments become challenging, potentially violating SLAs. Conse-
quently, horizontal scaling and migration become unfeasible, leading
to a zero adjustment cost. However, the total cost of ISFCDAA lies in
the middle before the first 5 time slots, which is 16.92% lower than
the total cost of DQN and 11.09% higher than REAP. After the fifth
time slot, the total cost decreases and remains at a low level, although
it surpasses REAP. It remains 7.99% lower than the total cost of DQN
on average. However, the acceptance rate of REAP and DQN are much
lower than that of ISFCDAA.

Therefore, this paper compares the benefits brought by the adjust-
ments of each algorithm under 35 time slots, as shown in Fig. 11. It is
evident that ISFCDAA yields the highest long-term profit, followed by
DQN, while REAP has the lowest long-term profit. The average long-
term profit of ISFCDAA is 21.47% higher than DQN and 42.92% higher
than REAP. This proves the flexibility and superiority of ISFCDAA in
the environment with dynamic resource. Besides, it underscores the
performance advantages of DQN over REAP and the limitations of REAP
in handling large resource changes.

6. Conclusion

This paper aims to address the challenges posed by dynamic demand
of SFC in the context of NFV infrastructure. We propose an intelligent
adjustment algorithm based on deep reinforcement learning to achieve
a balanced distribution of network resources while minimizing the
associated adjustment costs and meeting user requirements. We first

Computer Networks 242 (2024) 110254Y. Wang et al.

f
i
t
V
I
s
i
a
t
f
p
m
t
f

C

d
t
R
J
R

D

c
i

D

A

n y-
U
b
R
K

R

Fig. 10. Total cost.

Fig. 11. Long-term profit.

ormulate the problem as an ILP and transform the optimization process
nto MDP. We then propose an efficient algorithm for the problem,
hrough jointly considering vertical scaling, creating new instances of
NF, and VNF migration. Finally, we evaluate the performance of

SFCDAA with other adjustment methods. Simulation results demon-
trate that ISFCDAA achieves a more balanced resource distribution
n a single time slot. Moreover, in the long term, the acceptance rate
nd long-term benefits of ISFCDAA are also significantly better than
hose of the DQN and REAP algorithms, providing an effective solution
or resource management in NFV orchestrator. In future research, we
lan to investigate a proactive strategy that incorporates a prediction
echanism to account for the volatility of demands. And inspired by

he literature [21], we will add the impact of service interruption to
ind a more complete adjustment strategy.

RediT authorship contribution statement

Yuantao Wang: Writing – review & editing, Writing – original
raft, Software, Methodology, Investigation, Formal analysis, Concep-
ualization. Zhaogang Shu: Writing – review & editing, Supervision,
esources, Funding acquisition. Shuwu Chen: Supervision, Resources.
iaxiang Lin: Supervision, Resources. Zhenchang Zhang: Supervision,
esources.
11
eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The authors do not have permission to share data.

cknowledgments

This work was supported by Natural Science Foundation by Tech-
ology Department of Fujian Province, China (No. 2020J01574), Industr
niversity-Research Innovation Fund for Future Network Technology
y Education Department of China (No. 2021FNA05003), Industry-
esearch Project from Network Communication Company (No.
H230139A).

eferences

[1] Network functions virtualization-white paper3, https://portal.etsi.org/Portals/0/
Tbpages/NFV/Docs/NFV_White_Paper3.pdf.

[2] F. Hu, Q. Hao, K. Bao, A survey on software-defined network and openflow:
From concept to implementation, IEEE Commun. Surv. Tutor. 16 (4) (2014)
2181–2206.

[3] C. Bu, J. Wang, X. Wang, Towards delay-optimized and resource-efficient
network function dynamic deployment for VNF service chaining, Appl. Soft
Comput. 120 (2022) 108711.

[4] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, S. Davy,
Design and evaluation of algorithms for mapping and scheduling of virtual
network functions, in: Proceedings of the 2015 1st IEEE Conference on Network
Softwarization, NetSoft, IEEE, 2015, pp. 1–9.

[5] T. Benson, A. Akella, D.A. Maltz, Network traffic characteristics of data centers
in the wild, in: Proceedings of the 10th ACM SIGCOMM Conference on Internet
Measurement, 2010, pp. 267–280.

[6] M. Mao, M. Humphrey, Auto-scaling to minimize cost and meet application
deadlines in cloud workflows, in: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, 2011, pp.
1–12.

[7] M. Savi, M. Tornatore, G. Verticale, Impact of processing-resource sharing on
the placement of chained virtual network functions, IEEE Trans. Cloud Comput.
9 (4) (2019) 1479–1492.

[8] D. Zhao, G. Sun, D. Liao, S. Xu, V. Chang, Mobile-aware service function
chain migration in cloud–fog computing, Future Gener. Comput. Syst. 96 (2019)
591–604.

[9] S. Orlowski, R. Wessäly, M. Pióro, A. Tomaszewski, SNDlib 1.0—Survivable
network design library, Netw.: Int. J. 55 (3) (2010) 276–286.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M.
Riedmiller, Playing atari with deep reinforcement learning, 2013, arXiv preprint
arXiv:1312.5602.

[11] S. Padhy, J. Chou, Reconfiguration aware orchestration for network function
virtualization with time-varied workload in virtualized datacenters, IEEE Access
9 (2021) 48413–48428.

[12] H. Hawilo, M. Jammal, A. Shami, Orchestrating network function virtualiza-
tion platform: Migration or re-instantiation? in: 2017 IEEE 6th International
Conference on Cloud Networking, CloudNet, IEEE, 2017, pp. 1–6.

[13] T. Buh, R. Trobec, A. Ciglič, Adaptive network-traffic balancing on multi-core
software networking devices, Comput. Netw. 69 (2014) 19–34.

[14] V. Eramo, M. Ammar, F.G. Lavacca, Migration energy aware reconfigurations of
virtual network function instances in NFV architectures, IEEE Access 5 (2017)
4927–4938.

[15] S. Ayoubi, Y. Zhang, C. Assi, A reliable embedding framework for elastic
virtualized services in the cloud, IEEE Trans. Netw. Serv. Manag. 13 (3) (2016)
489–503.

[16] Q. Zhang, F. Liu, C. Zeng, Online adaptive interference-aware VNF deployment
and migration for 5G network slice, IEEE/ACM Trans. Netw. 29 (5) (2021)
2115–2128.

[17] O. Houidi, O. Soualah, W. Louati, M. Mechtri, D. Zeghlache, F. Kamoun,
An efficient algorithm for virtual network function scaling, in: GLOBECOM
2017-2017 IEEE Global Communications Conference, IEEE, 2017, pp. 1–7.

[18] D. Harutyunyan, R. Behravesh, N. Slamnik-Kriještorac, Cost-efficient placement
and scaling of 5G core network and MEC-enabled application VNFs, in: 2021
IFIP/IEEE International Symposium on Integrated Network Management, IM,
IEEE, 2021, pp. 241–249.

https://portal.etsi.org/Portals/0/Tbpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/Tbpages/NFV/Docs/NFV_White_Paper3.pdf
https://portal.etsi.org/Portals/0/Tbpages/NFV/Docs/NFV_White_Paper3.pdf
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb2
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb3
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb4
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb5
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb6
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb7
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb8
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb9
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb9
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb9
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb11
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb12
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb13
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb13
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb13
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb14
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb15
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb16
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb17
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb18

Computer Networks 242 (2024) 110254Y. Wang et al.
[19] Z. Chen, H. Li, K. Ota, M. Dong, HyScaler: A dynamic, hybrid VNF scaling system
for building elastic service function chains across multiple servers, IEEE Trans.
Netw. Serv. Manag. (2023).

[20] V. Eramo, E. Miucci, M. Ammar, F.G. Lavacca, An approach for service function
chain routing and virtual function network instance migration in network
function virtualization architectures, IEEE/ACM Trans. Netw. 25 (4) (2017)
2008–2025.

[21] G. Sun, R. Zhou, J. Sun, H. Yu, A.V. Vasilakos, Energy-efficient provisioning
for service function chains to support delay-sensitive applications in network
function virtualization, IEEE Internet Things J. 7 (7) (2020) 6116–6131.

[22] R.A. Addad, D.L.C. Dutra, T. Taleb, H. Flinck, Ai-based network-aware service
function chain migration in 5g and beyond networks, IEEE Trans. Netw. Serv.
Manag. 19 (1) (2021) 472–484.

[23] H. Feng, Z. Shu, T. Taleb, Y. Wang, Z. Liu, An aggressive migration strategy
for service function chaining in the core cloud, IEEE Trans. Netw. Serv. Manag.
(2022).

[24] A. Fischer, J.F. Botero, M.T. Beck, H. De Meer, X. Hesselbach, Virtual network
embedding: A survey, IEEE Commun. Surv. Tutor. 15 (4) (2013) 1888–1906.

[25] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press,
2018.

[26] Y. Bi, C.C. Meixner, M. Bunyakitanon, X. Vasilakos, R. Nejabati, D. Simeonidou,
Multi-objective deep reinforcement learning assisted service function chains
placement, IEEE Trans. Netw. Serv. Manag. 18 (4) (2021) 4134–4150.

[27] J. Ye, Y.-J.A. Zhang, DRAG: Deep reinforcement learning based base station
activation in heterogeneous networks, IEEE Trans. Mob. Comput. 19 (9) (2019)
2076–2087.

[28] B.R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A.A. Al Sallab, S. Yogamani, P.
Pérez, Deep reinforcement learning for autonomous driving: A survey, IEEE
Trans. Intell. Transp. Syst. 23 (6) (2021) 4909–4926.

[29] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double q-
learning, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol.
30, 2016.

[30] Y. Wang, Z. Shu, Y. Zhong, C. Qiu, J. Tian, Service function chain placement
algorithm based on VNF instance sharing, Appl. Res. Comput. 40 (6) (2023)
1806–1811.

Yuantao Wang is currently pursuing the master’s degree at
computer science and technology, Fujian Agriculture And
Forestry University. Her research interests include software
defined networking and network function virtualization. She
is now undertaking the research work on reducing the
operating expense of network operators with the constrained
optimization.

Zhaogang Shu is currently an Associate Professor at the
College of Computer and Information Science, Fujian Agri-
culture and Forestry University, Fuzhou, China. He also is
the director of Department of Computer Science and Cloud
Computing Lab, Fujian Agriculture and Forestry University.
He received B.S. and M.S. degrees in computer science from
Shantou University, China in 2002 and 2005 respectively.
He also received Ph.D. degree from South China University
of Technology, Guangzhou, China, in 2008. From Sept.
2008 to July 2012, he worked as a senior engineer and
project manager at Ruijie Network Corporation, Fuzhou,
12
China. From Oct. 2018 to Oct. 2019, he worked as a
visiting professor in MOSIAC lab at the Department of
Communications and Networking, Aalto University, Finland.
He directed more than 10 research projects and was the
author of more than 30 papers and 5 patents. His re-
search interests include software-defined network, network
function virtualization, 5G network and next generation net-
work architecture, network security, machine learning based
network optimization, cloud computing and edge comput-
ing. He serves as the reviewers of many famous journals
on network and communications, including IEEE Network,
IEEE/ACM Transactions on Networking, IEEE Transactions
on Network Service and Management, ACM/Springer Mobile
Networks, Elsevier Computer networks and so on. He also is
the member of CCF (China Computer Federation) and Fujian
Computer Society.

Shuwu Chen is currently a professor at the College of
Computer and Information Science, Fujian Agriculture and
Forestry University, Fuzhou, China. He also is the director
of Innovation Lab of IoT technology, Fujian Agriculture
and Forestry University. He received bachelor’s degree in
industrial automation from Chang’an University, China, in
1998. And, he received master’s degree in radio physics
from Xiamen University, China, in 2003. He is the Co
founder of Xiamen Four-Faith Communication Technology
Co., Ltd., which focus on IoT technology and solutions. He
directed dozens research projects and was the author of
more than 10 patents. His research interests include IoT
technology, edge computing and AI algorithm.

Jiaxiang Lin received the Ph.D. degree in Communication
and Information System from Fuzhou University, China,
in 2010. He is currently an Associate Professor with the
College of Computer and Information Sciences, Fujian Agri-
culture and Forestry University, Fuzhou, China. He has
hosted four national, provincial and ministerial level re-
search projects, authored over 40 referred scientific papers
and hold three patents of invention. His research interests
include spatial data mining, artificial intelligence, and big
data analysis.

Zhenchang Zhang is currently an Associate Professor at
the College of Computer and Information Science, Fujian
Agriculture and Forestry University, Fuzhou, China. He has
hosted and participated in a number of provincial and
ministerial projects, including the fund project of Fujian
Provincial Department of Education, the subsidy project of
Fujian Provincial Marine Economy Development, the Na-
tional Science and Technology Support Project, etc. He has
obtained one national invention patent and more than 10
software copyrights. His research interests include parallel
computing, blockchain, deep learning and data assimilation.

http://refhub.elsevier.com/S1389-1286(24)00086-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb19
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb20
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb21
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb21
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb21
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb21
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb21
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb22
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb22
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb22
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb22
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb22
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb23
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb24
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb25
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb26
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb27
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb28
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb29
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb30
http://refhub.elsevier.com/S1389-1286(24)00086-0/sb30

	A cost and demand sensitive adjustment algorithm for service function chain in data center network
	Introduction
	Related Work
	System Model and Problem Formulation
	Problem Description
	System Model
	Physical Network
	Service Function Chain
	Cost Structure

	Problem Formulation
	Constraints
	Objective

	The Policy of Dynamic Adjustment
	Markov Decision Process
	Deep Reinforcement Learning-Based VNF Dynamic Adjustment Approach

	Experimental Results And Discussion
	Simulation Setup
	Baseline
	Evaluation Indicators
	Simulation Results and Analysis

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

