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A B S T R A C T   

This paper addresses the problem of mapping, scheduling, and routing of virtual network functions (VNF) on a 
service function chain (SFC) that is sensitive to latency in a virtual network. A scheduling algorithm for VNF is 
proposed, which aims to minimize the SFC rejection rate while taking into account VNF mapping, scheduling, 
and traffic routing during the scheduling process. To achieve this goal, a Markov decision process (MDP)-based 
VNF scheduling model is established that guarantees SFC resource requirements are met. The model uses the 
D3QN (Dueling Double DQN) algorithm based on composite rules to select the SFC at each scheduling time point, 
and selects virtual nodes and routes using a routing optimization algorithm to minimize the SFC rejection rate. 
We compare our algorithm with the single rule, DQN and genetic algorithm, and the simulation results show that 
the proposed algorithm can reduce the rejection rate of SFC by approximately 8% compared to genetic 
algorithms.   

1. Introduction 

With the development of network technology, 5G networks have 
been further upgraded compared to traditional networks, resulting in 
diversified network services. At the same time, the number of low- 
latency networks is growing exponentially. Meeting the growing and 
diverse needs of users for the network is currently the focus of the 
communication industry. 

In the traditional static network architecture, there are mainly two 
problems. Firstly, the services provided by the network, such as firewalls 
and WAN optimizers, are tightly coupled with hardware called mid-
dleboxes [1]. Different network functions require different hardware, 
resulting in inflexible network functions and difficult maintenance, 
which requires a significant amount of operational and capital expen-
ditures [2,3]. Secondly, the static network mode cannot meet the 
differentiated performance requirements of new applications. To 
address these problems, Network Function Virtualization (NFV) has 
been introduced in 5G networks. The main function of NFV is to 
decouple hardware and software from proprietary devices, making 
software independent of any proprietary hardware. The decoupled 
software is abstracted into independent network modules, called 

Virtualized Network Functions (VNF) [4]. These VNF can be adaptively 
placed on physical resources to provide the network node with the 
corresponding VNF function. Therefore, based on a reliable VNF archi-
tecture in the network, it not only improves the flexibility of the 
network, meets QOS requirements, makes reasonable use of network 
resources, but also offsets dedicated hardware devices, thereby reducing 
operators’ operational and capital expenditures [5,6]. 

In the architecture of NFV, a Service Function Chain (SFC) is formed 
by several VNF instances arranged in a certain order to provide network 
services on the network infrastructure [7]. However, configuring SFC on 
NFV-supported network infrastructure is not a simple task, especially for 
delay-sensitive SFC (e.g., tactile internet services), as these SFC need to 
be combined in a specific order and completed within strict service 
deadlines [8]. To meet such strict timing requirements, service providers 
must effectively perform VNF placement and scheduling as well as 
traffic routing for these SFC, a challenge also known as NFV resource 
allocation (NFV-RA) [2,9]. Generally, the NFV-RA problem can be 
divided into three main sub-problems: (a) VNF composition, (b) VNF 
placement, and (c) VNF scheduling. The first sub-problem involves the 
composition of SFC, the second sub-problem, aims to place the VNF in 
the SFC onto nodes that support NFV and map the virtual links between 
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VNF to the underlying links. The third sub-problem focuses on deter-
mining the execution plan for the VNF in the SFC required to run a given 
service. 

Although the NFV-RA problem consists of three problems, the 
placement and scheduling of VNF have always been the main research 
focus [9]. However, most papers address VNF placement and scheduling 
separately, which may not meet strict service deadlines in practical 
situations. For example, [11,12,13] mainly solves the problem of VNF 
placement, and secondly, there are also many problem models and so-
lutions for VNF scheduling, such as [8,19], which solve the delay sen-
sitive NS scheduling problem. In addition to individual processing, there 
are also studies on the joint solution of VNF placement and scheduling 
problems, such as references [20,21,22]. However, it should be noted 
that in the above studies, network service scheduling did not consider 
network routing and business transmission delay, which is an important 
factor affecting delay sensitive SFC in practical environments. 

In summary, there are two main issues in most existing research 
papers on VNF scheduling. Firstly, VNF scheduling and VNF placement 
are discussed separately. Secondly, the transmission delay of network 
services in the network is not considered. Both of these issues are 
important factors in delay sensitive SFC in practical situations. To 
address these two issues, this article models and solves the VNF place-
ment and scheduling problem as a whole, facing complex challenges, 
especially when considering traffic routing and transmission delay. This 
is a very complex combinatorial optimization problem. Some papers 
have developed various metaheuristic algorithms [25,29,30]. Although 
these heuristic algorithms typically have fast implementation and 
simplicity, their performance is largely influenced by problem charac-
teristics and may decrease with increasing network size. In addition, in 
terms of runtime, metaheuristic algorithms such as genetic algorithms 
(GA) may experience slower convergence rates during the iteration 
process, especially when dealing with complex problems, resulting in 
increased computational costs and runtime, and may prematurely fall 
into local optima. Therefore, this article first represents the low latency 
VNF scheduling problem as NP Hard’s mixed integer linear program-
ming (MILP), Then, the original problem is rephrased as a Markov de-
cision process problem, and a deep reinforcement learning framework is 
proposed to solve this problem. Of course, the use of deep reinforcement 
learning frameworks to set network parameters and states, actions, and 
reward sets ensures that intelligent agents can make correct decisions in 
different environments, which is also a complex challenge. 

In this regard, the deep reinforcement learning scheduling algorithm 
proposed in this article solves the placement and scheduling problems of 
VNF, ensuring that delay sensitive network services are completed 
within strict service deadlines to minimize the total number of unfin-
ished SFC. The main contributions are as follows:  

A: This paper formulates the VNF scheduling problem as a Mixed- 
Integer Linear Programming (MILP) problem. The problem takes 
into account the joint mapping and scheduling of VNF while 
considering route optimization. The objective is to improve the 
acceptance rate of SFC and reduce routing overhead, all while 
meeting the strict service deadlines of delay-sensitive SFC.  

B: Design the state, action, and reward models for the D3QN to enable 
the network to choose appropriate actions based on different current 
states, aiming to maximize rewards. Additionally, integrate the 
D3QN network with heuristic algorithms for route optimization, 
with the goal of minimizing transmission time and routing overhead 
while meeting SFC requirements as closely as possible.  

C: Demonstrate the convergence of the proposed deep reinforcement 
learning algorithm through an extensive set of experiments. 
Compare the performance of the proposed method with meta-
heuristic algorithms, composite scheduling rules, and standard DQN. 
Simulation results indicate that the proposed approach outperforms 
in effectively addressing the delay-aware VNF scheduling problem. 

The remainder of this paper is organized as follows. Section 2 de-
scribes related work,Section 3 describes the problem and divides it into 
several sub-problems, while also discussing the interactions and impacts 
between these sub problem problems and scheduling. Section 4 defines 
the problem and proposes a rule-based deep reinforcement learning 
scheduling model, and explains the methods for solving the problems of 
VNF mapping, scheduling, and traffic routing. The results of numerical 
experiments are given in Section 5. Finally, conclusions are drawn in 
Section 6. 

2. Related Work 

In the context where multiple network functions can be accommo-
dated within a single node, and there are multiple VNF to be deployed 
across the network, the rational placement of VNF on network nodes to 
address issues such as VNF reusability or sharing for cost reduction poses 
a significant challenge known as the VNF Placement Problem. For 
instance, researchers have delved into the VNF Placement Problem with 
reliability considerations, formulating two protection mechanisms as 
Integer Linear Programming (ILP) models and proposing a Dynamic 
Programming-based heuristic algorithm [10]. Hyodo et al. [11] 
formalized the VNF Placement Problem as an ILP model and introduced 
a heuristic algorithm to minimize layout and link costs, while allowing 
for flexibility in VNF access sequence and cyclic SFC configurations. 
Alahmad and Agarwal [12] presented two Mixed-Integer Linear Pro-
gramming (MILP) models addressing the cost and availability aspects of 
VNF placement and type selection. In comparison to existing solutions, 
their proposed approach reduces the overall cost of requested network 
services without violating availability requirements. Feng et al. [13] 
introduced an advanced heuristic algorithm involving VNF migration to 
an alternative available node, effectively enhancing SFC utilization and 
acceptance rates. Recognizing the limitations of existing deep rein-
forcement learning in generalizing across diverse network topologies, 
Sun et al. [14] combined deep reinforcement learning with neural net-
works, enhancing the generalization capabilities of VNF placement 
across different network topologies. Laaziz et al. [15] designed a 
multi-objective Integer Linear Model to address VNF placement prob-
lems with different topology outcomes (linear or nonlinear). Rankothge 
et al. [16] proposed two algorithms for VNF placement in response to 
new service requests and adjustments to VNF placement and location in 
response to changes in network traffic. 

Additionally, when VNFs are placed on nodes, efficiently processing 
them in the shortest possible time to ensure the completion of as many 
SFC as possible within specified deadlines or to minimize the completion 
time for all services constitutes the VNF Scheduling Problem. For 
instance, Riera et al. [17] initially formulated the VNF Scheduling 
Problem as a job-shop scheduling problem and proposed its mathe-
matical model without presenting a polynomial-time solution. Li and 
Qian [18] introduced a grouping scheduling algorithm considering the 
characteristics of grouped queues and SFC chains, given its lower 
complexity. Chen and Wu [19] designed a processing and delay model 
capturing communication delay behaviors in intermediate box pro-
cessing flows, followed by the development of two corresponding heu-
ristic scheduling algorithms. Mijumbi et al. [20] devised three greedy 
algorithms and a tabu search algorithm to address the placement and 
scheduling issues of VNF on supporting virtual machines. Assi et al. [21] 
proposed an effective and energy-efficient method for VNF placement 
and scheduling, utilizing heuristic algorithms to tackle the problem. 

In the existing literature, reinforcement learning has been employed 
to tackle combinatorial optimization problems. For instance, in the work 
by [31], a reinforcement learning algorithm is proposed to determine a 
variable action set at each decision state, capturing the varying execu-
tion times of actions to achieve delay-aware VNF scheduling. Bello et al. 
[32] introduced a framework using neural networks and reinforcement 
learning to address combinatorial optimization problems. In the context 
of workshop scheduling, related research exists, such as [33] where T. 
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Gabel et al. interpreted the job-shop scheduling problem as a sequential 
decision problem handled by independent learning agents. Utilizing a 
probability scheduling strategy, the intelligent agent adjusts parameters 
using policy gradient reinforcement learning during continuous learning 
to enhance the performance of the joint policy measured by the standard 
scheduling objective function.In [34], Luo S. addressed the dynamic 
flexible job-shop scheduling problem (DFJSP) by setting up a deep Q 
network. Liu et al. [35] proposed a hierarchical and distributed archi-
tecture to solve the dynamic flexible job-shop scheduling problem, 
introducing specialized state and action representations to handle var-
iable specifications in dynamic scheduling. Additionally, an alternative 
reward shaping technique was developed to improve learning efficiency 
and scheduling effectiveness.While the aforementioned workshop 
scheduling problems bear some similarities to VNF scheduling, they do 
not consider transmission delays between machines, which is a notable 
distinction. Most existing work often separates VNF placement and 
scheduling or neglects transmission delays, rendering it impractical to 
meet strict service requirements. Therefore, this paper integrates VNF 
placement and scheduling, considering route selection. A deep rein-
forcement learning agent is deployed to gather network state informa-
tion at each moment and make optimal VNF scheduling decisions based 
on the defined reward function. 

3. Problem Description and Model 

3.1. Problem Description 

The resource allocation of VNF mainly consists of: (a) VNF compo-
sition, (b) VNF placement, and (c) VNF scheduling. Regarding VNF 
composition, a lot of existing literature have studied it and proposed 
feasible solution [27,28]. this article will not describe it further. In this 
section, we mainly focus on the joint problem of VNF placement and 
scheduling for latency-sensitive SFC. 

SFC is a chain of network functions composed of different VNF based 
on customer demands at the beginning of the network service phase. 
These SFC have a sequential and dependent execution order (the next 
VNF can only start processing after the previous one is completed). For 
example, there are one SFC with the execution order: VNF11 → VNF12 
→ VNF13 → VNF14, in which VNF12 only start to run after the execu-
tion of VNF11 is completed. 

The placement of VNF is performed based on the completion of the 
SFC components. Its main purpose is to find a node position that meets 
the constraints of the VNF and prepares for the subsequent scheduling 
phase. The VNF scheduling is performed on the traffic of each SFC to 
enable more SFC to be completed within the specified deadline. 
Therefore, create a virtual network to place the VNF in the SFC and run 
them on the virtual machines deployed on physical servers. This article 
considers issues such as deploying the SFC along the chain on the 
network, guiding the traffic between them while ensuring their order 
and required bandwidth, and ultimately scheduling the VNF for their 
traffic according to the deadline. It is assumed that each VNF instance on 
each virtual machine can be shared by multiple SFC, but each virtual 
machine can only handle the traffic of one SFC at a time as described 
[20,22]. In the remainder of this paper, the problem is refined through 
examples, and the impact on scheduling is discussed. Assuming an NFV 
infrastructure consists of four virtual nodesNthat support VNFs and five 
linksL,The available bandwidth of the links is 15Mbps, as shown in Fig 1. 

Given a set of delay-sensitive SFC is composed of multiple VNF,the 
virtual network functions are represented byF = {f1, f2, …, fm},and 
VNFirepresents the function corresponding to the VNF, where1 ≤ i ≤ m, 
For example,VNF1means that the function of the VNF isf1, and 
EachVNFimust be mapped to a nodeNthat has the corresponding func-
tion. Since each VNF may have different processing capabilities in the 
network, its processing time is represented as pt = w

pv, wherewis the size 
of the traffic and pvis the processing capability of the VNF. Apart from 

the processing time of nodes, the time taken for traffic to be transmitted 
through a link can also be represented asDt = w

b, brepresents the required 
link bandwidth, and according to the above description, the SFC in this 
example can be represented by a 5-tuple, denoted as SFC = {VNF,w,b,pt,
D}VNFrepresents the set of VNF required for the SFC,wdenotes the size 
of traffic,ptis the processing time of the node, andDis the deadline for the 
SFC, Assuming that there are three SFC in the example, SFC = {SFC1,

SFC2, SFC3}SFC1 = {(VNF1, VNF4), 24Mb, 12Mbps, 2T, 10T}, SFC2 =

{(VNF2, VNF5), 12Mb, 12Mbps, 1T, 3T}, SFC3 = {(VNF2, VNF4), 24Mb,
6Mbps,2T,8T}.The three SFCs arrive at the network atT = 0as shown in 
Fig 2. and in the first scenario where they are accepted in sequence, the 
situation is shown in Fig 3. 

They are all mapped to Node 1 at the same time and processed 
sequentially in the order of SFC1, SFC2, and SFC3,at timeT = 0toT = 2, 
Node 1 completed the processing of the firstVNFofSFC1, and traffic 
began to be transmitted through virtual linkL1for a duration of 2s. AtT =

4,Node 3 began processing the nextVNF, and finally com-
pletedSFC1atT = 6, which is less than the deadlineDofSFC1and meets 
the transmission delay requirements. Next, we look atSFC2. WhenT = 2, 
Node 1 started processing the firstVNFofSFC2after completingSFC1, and 
completed it atT = 3with a processing time of 1s. It also began traffic 
transmission through virtual link L1, but since virtual linkL1was still 
transmitting traffic forSFC1at this time, the remaining 
bandwidth(15Mbps − 12Mbp < 12Mbps)of the virtual link was not suf-
ficient to meet the bandwidth demand, soSFC2had to wait, atT = 4after 
the transmission ofSFC1is completed,SFC2starts to transmit and reaches 
node 3 atT = 5. However, since the processing of SFC1is not yet 
completed at this time, it has to wait again and complete atT = 7. But by 
this time, it has exceeded the deadline ofSFC2and is therefore not 
accepted. Finally,SFC3starts processing atT = 3and completes atT = 5. 
At this time, the remaining bandwidth of virtual linkL1is15Mbps, which 
satisfies the bandwidth required forSFC3to transmit. It arrives at node 3 
atT = 9and finally completes processing at T = 11,which is the same 
asSFC2. However, the final processing completion time exceeds the 
deadline ofSFC3and cannot be accepted. It is obvious that in this situ-
ation, two of the threeSFCthat entered the network at the same time 
cannot satisfy their latency requirements and are rejected. [8] also 
proposes the partitioning of the VNF scheduling problem into distinct 
sub-problems; however, their approach employs heuristic algorithms, 

Fig. 1. network topology  

Fig. 2. information of SFC  
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which may lead to slower convergence rates and susceptibility to issues 
like local optima when dealing with complex problems. 

3.2. Mapping of Virtual Network Functions 

In the previous section, the completion times ofSFC2and SFC3were 
much greater than their deadlines, mainly due to the processing order 
ofSFCand insufficient virtual link bandwidth, which resulted in exces-
sive waiting and delayedSFCprocessing time. To reduce the waiting time 
on nodes and links, the first VNF ofSFC3is mapped to node 2 here,SFC1 
andSFC3are processed simultaneously at T=0 as shown in Fig 4. At 
T=2,SFC1and SFC3have both completed processing.SFC1continues to 
propagate on the virtual linkL1, whileSFC3propagates on the virtual 
linkL3. WhenT = 7,SFC1reaches node 2 and begins processing, 
completing at T=6. Similar to the previous section,SFC2also completes 
atT = 7, whileSFC3starts processing atT = 7 and completes atT = 9. 
AlthoughSFC3has still not met the expected processing time, compared 
to the previous scenario, its completion time is much earlier. 

3.3. Processing Order of VNF 

In sections A and B,SFC2still failed to complete within the deadline 
becauseSFC1was always processed first, which caused SFC2, which is 
very sensitive to time delays, to wait for two time units. This is not ideal. 
Therefore, in this section, we consider scheduling to letSFC2process 
traffic first, as shown in Fig 5. At T = 0,SFC2andSFC3start processing at 
nodes 1 and nodes 2, respectively. At T = 1, SFC2completes processing, 
is transmitted on virtual link L1, and reaches node 3 at T = 2, 
completing traffic processing at T = 3. At this time, the delay require-
ment is satisfied, and it can be accepted in the network. SFC1and 
SFC3also complete atT = 7 and T = 9, respectively. 

3.4. Routing of Traffic 

AlthoughSFC1andSFC2met the delay requirement in the previous 
sections,SFC3still exceeded the deadline by one time unit. This is mainly 
becauseSFC1arrived at node 3 first and node 3 was idle at that time, so it 
processedSFC1beforeSFC3arrived, causing SFC3to wait. In order to solve 
this problem, we choose a different routing strategy, as shown in Fig 6. 

As before, at T = 0,SFC2andSFC3start processing at nodes 1 and nodes 
2, respectively. AfterSFC2processing completes,SFC1is processed, and 
the firstVNFis completed atT = 3. Then,SFC1traffic begins to be trans-
mitted on virtual linksL2 andL3instead ofL1, which changes the trans-
mission route. This allowsSFC3to arrive at node 3 first and start 
processing atT = 6, completing processing at T = 8,thereby meeting the 
delay requirement. After SFC3processing completes,SFC1starts pro-
cessing and completes atT = 10, meeting the delay requirement as well. 
In this way, all three SFCs are completed within the specified time and 
can be accepted by the network.. 

From the above scenarios, it can be seen that VNF mapping, pro-
cessing order, and routing selection all have certain impacts on their 
respective schedules and thus affect the network acceptance rate. In the 
remainder of this paper, we will explore how to solve these problems 
and combine them for VNF scheduling. 

4. Scheduling Model Based on DRL 

In this section, we first introduce the relevant knowledge about 
D3QN, and then define the mathematical model of the scheduling 
problem for delay-sensitive service function chains based on the D3QN 
model. 

4.1. Related Background  

a. DQN 

The concept of DQN was first proposed by Mnih [23]. It can be 
viewed as a neural network function approximator with weights. DQN 
can handle complex decision-making processes with large and contin-
uous state spaces by directly taking raw data (state features) as input and 
the function values of each state-action pair as output. The training and 
improvement of DQN are mainly reflected in the following two aspects. 
First, in the DQN model, the optimal action is selected by interacting 
with the environment through policyπ, and a new environment is 
formed and rewards are obtained by the action acting on the environ-
ment, forming a new tuple< S,A,R,St+ 1 >, which will be stored in the 
experience pool for learning by DQN. When the capacity of the 

Fig. 3. Normal sequential processing  

Fig. 4. Mapping of VNF  

Fig. 5. Processing order of VNF  

Fig. 6. Routing of Traffic  

Z. Liu et al.                                                                                                                                                                                                                                       



Computer Networks 246 (2024) 110418

5

experience pool is full, old experiences will be replaced by new ones, and 
each transition can be used multiple times to update the parameters, 
thereby achieving better data efficiency. The second is the target 
network. In the target network, the network parameters are updated 
every time during training to make it more stable during training. The 
DQN network calculates the parameters of the online network are 
updated according to the target values calculated formula [37],As 
follow, whereγis the discount factor [0,1],a′is the learning rate, andθ′is 
the network parameter. 

yi = ri + γa′maxQ(s′, a′; θ′) (1)    

b. Double DQN 

However, traditional DQN also has some problems, such as over-
estimation [24]. The reason for the overestimation problem is that in the 
learning process of the neural network, bias and variance problems may 
occur. Bias refers to the insufficient fitting ability of the model itself, 
which cannot accurately fit the true Q value function. Variance refers to 
overfitting of the model to the training data during the training process, 
resulting in insufficient generalization ability for unknown data. This 
makes the estimated value function larger than the true value function, 
so that the worst actual value may become the best estimated value, 
while the best actual value may become the worst estimated value. To 
avoid this problem, the Double DQN form is adopted [38]. In DQN, a 
new network is added, whose structure is the same as the original 
network, but uses different network parameters. These two networks 
have different uses. The original network is used to control the agent’s 
collection of learned experiences and selection of actions, while the new 
network is used to calculate the value of actions. This decoupling of 
selection and evaluation reduces overestimation, making learning more 
stable. The formula in Eq.(2): 

yi = ri + γQ(s′, arga′maxQ(s′, a′; θ); θ′) (2)    

c. Dueling DQN 

Next, in DQN, the neural network outputs the value of actions, but 
evaluating the value of actions alone may not be accurate. Because the 
value of actionsQ(S, A)is related to the State and the Action, but the 
degree of this relationship or influence is not the same. We hope to 
reflect the difference between these two factors. Therefore,the Dueling 
DQN algorithm improves DQN from the network structure [36].The 
neural network output of the action value function can be divided into 
state value function and advantage function. The formula in Eq.(3): 

Qπ(s, a) = Vπ(s) + Aπ(s, a) (3) 

Vπ(s)represents the state value function, which is mainly equal to the 
average of all action probabilities in that state, i.e., the sum of all action 
values multiplied by their probabilities. Qπ(s, a)value represents the 
action value in that state. The advantage function Aπ(s, a) = Qπ(s, a) −
Vπ(s) corresponds to the average high or low of each action, so that 
action values that are higher than the average will be even higher, while 
those that are lower will be even lower, which can speed up the 
convergence of the network. Considering the above description, it is 
proposed to use D3QN as the network model for training in this paper, 
which is expected to achieve better results. 

4.2. Problem Definition and Formulas 

In the physical network graph G (N, L), where N represents virtual 
nodes used to host and run different types of VNF, and L represents 
virtual links connecting every two nodes. There is a set of SFC, and each 
SFC requests its traffic to be processed by the network, which needs to 
satisfy the following requirements: a) each VNF of each SFC must be 

mapped to a node capable of processing its function; b) each VNF of each 
SFC is processed in order, and the next VNF cannot be processed until 
the previous one is completed; c) the bandwidth of the link must meet 
the traffic demand. The purpose of this paper is to find the optimal node 
to map and schedule VNF while meeting the above requirements, in 
order to maximize the reception rate of SFC in the network. 

The main parameters involved and their meanings are shown in 
Table 1. 

This paper defines the following decision variables for the joint VNF 
placement and scheduling problem 

Knδ
ks ∈ {0, 1}is a binary variable,indicating Whether the VNFk ∈ kof 

the SFCs ∈ Sis mapped to the n noden ∈ Nat time stampδ,δ ∈ δ to start 
processing.(1)or not(0) 

lseij ∈ {0, 1}is a binary variable,indicating Whether the SFCs ∈ Svir-
tual link e ∈ Eis routed on the link (i, j) ∈ L, if yes, 1, otherwise 0. 

js ∈ {0, 1}is a binary variable,indicating Whether the SFCs ∈ Sis 
accepted by the network, that is, whether it can be completed within the 
specified time.(1)or not (0) 

Next, let’s consider the constraints required for optimizing the 
objective and its constraints. 

We aim to schedule SFC while ensuring constraints, therefore the 
objective is to maximize SFC acceptance rate, which is equivalent to 
minimizing SFC rejection rate: 

MaximizeΣs∈Sjs

st

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : Knδ
ks f k

s = fn

C2 :
∑

n∈N
Knδ

k+1s ≤ 1 −
∑

n′∈N

Kn′δ
ks

C3 : Knδ
ks = 1 − Knδ

k′S′, k, k′ ∈ K, s, s′ ∈ S

C4 :
∑

k∈K
pk

ns +
∑

e∈E
pe

s ≤ Ds, s ∈ S

C5 : lse
ij bk,k+1 ≤ Cij, e ∈ E, (i, j) ∈ L

C6 :
∑

k∈K
Knδ

ks = 1

(4) 

The optimization objective of this article is mainly subject to the 
constraints C1~C6. C1 ensures that the VNF types on the SFC are the 

Table 1 
SUMMARY OF KEY NOTATIONS  

parameters 

G′(K,
E)

Represents an SFC forwarding graph, 

F Type collection of VNF 
ft VNF instance type ft ∈ F 
Cij Available capacity between link i j 
S Set of SFC 
N Set of node 
δ timestamp 
bk,k+1 Required capacity of virtual links between The VNFk ∈ k and The 

VNFk + 1 ∈ k in each SFC 
ws Flow size of SFCs ∈ S 
Ds Deadline of SFCs ∈ S 
fk
s The type of the VNFk ∈ kof the SFCs ∈ S,fk

s ∈ ft 
fn The available instantiate types on node nn ∈ N,fn ∈ ft 
VS The number of VNF in the SFCs ∈ S 
pk

ns The average processing time of the VNFk ∈ k of the SFC s ∈ Son the 
noden ∈ N 

pe
s The transit time of the traffic on the virtual link 

pds The number of VNF processed for the SFC 
endS The time when the last VNF of the SFC s ∈ Swas completed. 
ut

n Represents the end time when the last VNF has been processed on node 
nn ∈ N. 

ut
n,k Represents the time taken for the VNFk ∈ kthat has been processed on node 

nn ∈ N.  
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same as the types of VNF instances mapped to the node. C2 states that 
the VNFk+ 1 ∈ kcannot be processed while the VNFk ∈ kof the SFC is 
still being processed. C3 ensures that a node’s VNF instance cannot 
process VNF of another SFC while processing the current SFC VNF. C4 
ensures that the remaining shortest completion time of the SFC can meet 
the deadline.C5 requires that the virtual link capacity required by the 
SFC must be less than the capacity of the physical link. C6 specifies that 
the VNF of the SFC can only be mapped to one node at the same time. 

5. Scheduling Algorithm Based On D3QN 

In this section, we first present the state definition of D3QN, followed 
by the candidate scheduling rules (actions) and reward definitions for 
each scheduling point. Then, we explain the node and route selection 
process, and finally, we discuss the network structure and training 
method of D3QN. 

5.1. State Definition 

Generally, the number of SFC or network nodes is usually very large. 
If we use the state features of each SFC or network at every moment as an 
indicator, it may lead to a large input volume, which can cause diffi-
culties in adapting and training D3QN. Therefore, we propose to 
extracted the features of each SFC and their average value is calculated 
to facilitate the training of D3QN and make it easier to extend to other 
environments. Therefore, the state is defined as follows:  

(1) TheACRdenotes the probability of successfully mapped VNF 
within each SFC relative to the total number of VNF.: 

ACR =

∑s
1

pdS
VS

s
(5)    

(2) TheAURrepresents the total time spent processing VNF on the 
average node compared to the total time the node runs: 

AUR =

∑n
1

∑k

1(ut
n,k)

ut
n

n
(6)    

(3) TheEORrepresents the potential SFC rejection rate at the current 
scheduling time point, where if the estimated shortest remaining 
processing time of the unfinished part (i.e., the remaining un-
processed VNF) of the SFC exceeds the specified deadline, even if 
the SFC has not exceeded the deadline at this time, it is also 
counted as a potential rejection. The main process is as follows: 

In Algorithm 1, the third line represents finding the SFC that has not 
yet completed the mapping, while the fifth to tenth lines represent the 
estimated processing time for the remaining VNF in the unfinished SFC, 
and determine whether the SFC can complete the processing within the 
expected processing time 

(1) TheAORrefers to the ratio of SFC that have exceeded their pro-
cessing deadline to the total number of SFC. The algorithm 
overview is as follows: 

In Algorithm 2, lines 3 to 7 represent all SFC in the loop to determine 
whether the current processing time has exceeded the deadline. If it has 
exceeded, the N value is added by 1 and divided by the total number of 
SFC 

In order to mitigate the wide range of input variations, reducing the 
performance and generality of the agent, this paper sets the values of the 
aforementioned states within the range [0, 1] and takes their averages. 
This approach aims to enhance the agent’s adaptability to different 
networks. Additionally, the average completion rateACRof the SFC and 
the average utilization rate AURof nodes are set to better capture the 
moment-to-moment changes in network states. This is done to enrich the 
rewards and avoid sparsity in the reward structure.ACRandAURalso 
effectively reflect the current SFC completion status, enabling the agent 
to make informed decisions. The actual completion rate AORreflects the 
quantity of existing incomplete SFC in the current network, while the 
expected completion rateEOR represents the anticipated number of SFC 
that may remain incomplete. These metrics provide direct insights into 
the current network state, allowing the agent to make better decisions. 
However, due to their limited variability, they may result in sparse re-
wards. Hence, they need to be complemented byACRand AURto provide 
a comprehensive understanding of the current network state for the 
agent. 

5.2. Action Definition 

In most existing research, the applicability of single-rule scheduling 
algorithms is limited, as they may not effectively cater to all states. 
Evolutionary algorithms like genetic algorithms often incur lengthy 
processing times. Therefore, this paper introduces Composite Rule 
Scheduling, presenting five rules tailored for intelligent agents. Different 
rules are designed to address various network state scenarios. During 
each scheduling iteration, the algorithm selects the rule with the highest 
current reward value based on the network state. Subsequently, the 
chosen rule is employed to identify the most suitable SFC for processing 
in the current iteration, laying the groundwork for subsequent route 
optimization. 

Algorithm 1 
The Calculation Process Of EOR  

Input: VS,pdS,Ds, endS 

Output: EOR 
1: N= 0 
2: for k = 1: n do 
3: if pdS<VSthen 
4: T= 0 
5: for i =pdS+1:VSdo 
6: T += (pk

nsþpe
s ) 

7: end for 
8: if endS+T >Dsthen 
9: N+=VS- i 
10: Break 
11: end if 
12: end if 
13:end for 

14:EOR =
N

∑S
1VS 

15: return EOR  
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(1) Rule 1: 

For Rule 1, first, the deadline of each SFC is compared in order, and 
the SFC with the smallest deadline is selected as the highest priority. If 
there are deadlines that are the same, the SFC with the largestendSvalue 
is selected as the highest priority, because if the currentendSof an SFC is 
greater, it means there is less time available to process subsequent VNF.  

(2) Rule 2: 

For Rule 2, this paper will use scheduling based on the lowest 
slackness as high priority, because slackness reflects the urgency of a 
task, and the lower the slackness, the less available time for the task and 
the higher the urgency.  

(3) Rule 3: 

For Rule 3, we divide it into two cases depending on whether there 
exists an SFC whoseendSvalue exceeds the deadline,that is, O is not 
empty. If such an SFC exists, the SFC with the smallest slack time is given 
the highest priority. If not, each SFC remaining time is divided by the 
remaining number of operations, and the smallest value is assigned the 
highest priority. The specific Algorithm 3 is shown below:  

(4) Rule 4: 

Similar to Rule 3, two scenarios are also handled in this case. If O is 
empty, the remaining time is divided by the estimated average pro-
cessing time of SFC. Otherwise, the minimum slack time is used as the 
selection criterion. The specific Algorithm 4 is as follows:  

(5) Rule 5: 

The expected shortest processing time refers to calculating how 
much time is needed to process each unfinished SFC. 

5.3. Reward 

Since the objective of this article is to minimize the rejection rate, a 
reward functionRtbased on this objective value is designed. Each SFC 
must be completed as much as possible within its deadline to reduce the 

rejection rate and obtain more rewards. However, since the change in 
the rejection rate can only be known when the entire SFC exceeds its 
deadline or has been processed, the reward may become sparse. 
Therefore, this article defines returns by considering the values of the 
four key state characteristics of the current state AOR, EOR, ACR, AUR, 
and the next state AOR’, EOR’, ACR’, AUR’.Rtas follows: 

rt =

⎧
⎨

⎩

1 if AOR′ < AOR
− 1 if AOR′ < AOR
f (EOR,EOR′,ACR,ACR′) if AOR′ = AOR

(7) 

WhenAOR′ = AORwe need to define an auxiliary functionf(EOR,
EOR′,ACR,ACR′)to further determine the value of rt. 

rt =

⎧
⎨

⎩

1 if EOR′ < EOR
− 1 if EOR′ < EOR
g(ACR,ACR′) if EOR′ = EOR

(8) 

When EOR′ = EOR,rt is as follows: 

rt =

⎧
⎨

⎩

0 if ACR′ > ACR
1 if ACR′ > 1.1 × ACR
− 1 otherwise

(9) 

ForAUR, the reward rt′ in this article is set as follows: 

rt′ = eAUR′− AUR (10) 

The final reward R is set as follows 

R = rt + rt′ (11)  

5.4. Node Selection and Routing Optimization 

According to the above description, the D3QN actions can be used to 
select the highest priority SFC for mapping. However, selecting the 
optimal node and routing for the SFC to meet the latency requirements is 
also a critical issue. Therefore, the rest of this section will describe how 
node and routing selection is performed in this paper.  

a. Node Selection 

The purpose of node selection is to choose a node that can handle the 
VNF type instance and can start processing its traffic as early as possible. 
This is because only by processing the traffic as early as possible can the 

Algorithm 2 
The Calculation Process of AOR  

Input: VS,pdS,Ds, endS 

Output: AOR 
1:N= 0 
2: for k = 1: n do 
3: ifendS > Dsthen 
4: N+=1 
5: end if 
6: end for 

7:AOR =
N

∑S
1VS 

8: return AOR  

Algorithm 3 
The Process Of Rule 3  

Input:VS,pdS,Ds, endS 

1: O←{S| pdS <VS && Ds <endS} 
2: P← {S| pdS <VS} 
3: if Isempty(O) then 

4: SFC = argminS∈P
Ds − endS

VS − pdS 
5: else 
6: SFC = argminS∈O [Ds − endS −

∑vS
v=pdS

(pk
ns + pe

s )]

7: end if  
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completion time be shorter and the latency requirement be met. This is 
described by the following formula: 

minNmax(NT,Ai) (12) 

NTrepresents the completion time of the last VNF processed on node 
N,Airepresents the time when the traffic of the selected SFC arrives at 
node N.max(NT, Ai)is used to represent the earliest start time for the 
traffic to arrive at that node. Therefore, minNmax(NT, Ai)represents 
selecting the earliest available among all available nodes.  

b. Routing Optimization 

The above formula represents the node selection, but currently, it is 
not possible to determineAi, which is the time when the traffic can reach 
the next candidate node after flowing through the link from the previous 
node. Therefore, the Dijkstra algorithm is used to find the shortest time 
path between two nodes while ensuring that the physical link capacity 
meets the virtual link when routing traffic, in order to determineAi. 
Because it is to find the shortest time path between two points, the path 
weight is set to the link transmission time plus the waiting time, as 
shown in Fig 7. 

The traffic shown on Fig 7(a) is from the source node A to the 
destination node C, and the transmission time of the traffic on the link is 
one time node. Link L1 needs to wait for 3t nodes due to insufficient 
resources from T=0 to T=3, so the weight of L1 is 4, while the weight of 
L2 is 1 as it has sufficient resources. The values of nodes A, B, and C are 
0, 1, and 4, respectively. When taking B as the starting point, as shown in 
Fig 7(b), because the processing time of L3 is from T=0 to T=1 and the 
value of node B is 1, L3 does not need to wait, so the weight of L3 is 1. 
Therefore, the values of nodes A, B, and C are updated to 0, 1, and 2. 
Hence, the shortest time path from A to C is 2. The specific node and 
routing selection algorithm are shown as follows: 

In Algorithm 5, from lines 2 to 5, all nodes are looped to find all 
nodes that meet the constraint condition (2). The Dijkstra algorithm is 
used to calculate the distance between the node mapped by the previous 
VNF on the SFC and the available nodes that need to be mapped to the 
current VNF. From lines 6 to 10, the time from the previous node to all 
available nodes is calculated as AiFinally,Aiis compared withNTto find a 
larger value and assigned to M, where M represents the earliest start 
time of the node, and line 12 represents the next processing node of the 
current VNF that finds the earliest start node. 

5.5. D3QN Network Architecture and Training 

The network structure of D3QN used in this article consists of an 
input layer and a hidden layer fully connected, which are then split into 
two branches: the advantage branch and the value branch. The Q value 
of each sub-action is obtained by aggregating the value branch and the 
corresponding advantage branch. respectively. The discount factor is 
0.9, the learning rate is 0.0002,The Batch size is 64 and the exploration 
rate is set to 0.5. In the training process, the scheduling point is defined 
as the beginning of each operation, and the training method and overall 
framework based on D3QN are shown in the following Algorithm 6. 

6. Simulation and Performance Analysis 

This section conducts simulations and performance analysis on the 
proposed rule-based selection D3QN scheduling algorithm. The paper 
compares the performance of D3QN with each composite rule in 
different scenarios and demonstrates its superiority over traditional 
DQN algorithm and genetic algorithm. 

6.1. Parameter Settings 

To conduct the evaluation, a network model similar to the one in 
[25] was designed. One is a medium-sized network consisting of 15 fully 
connected nodes, and 15, 20, 25, 30 and 35 randomly generated SFC 
were introduced into the network. The other is a large network con-
sisting of 30 fully connected nodes, and 30, 35, 40, 45 and 50 randomly 
generated SFC were introduced into the network. The available band-
width of each link is fixed at 50Mbps. In this article, it is assumed that 
each VNF can be processed on at least one VM node, and each VM node 
has the ability to host 2-3 VNF. For each SFC, random traffic generation ( 
[25-75]Mbits), bandwidth requirements ( [15-25]Mbps), and variable 
VNF ( [2-4]) were used as service compositions. Their deadlines were set 
to 4/3 times the sum of their processing and transmission delays, 
without considering any waiting delays [26]. 

6.2. The training process of D3QN 

Test D3QN on a predefined instance containing 15 nodes and 35 SFC 
insertions. The total reward results obtained by D3QN in the first 300 
training steps are shown in Fig 8 and Fig 9 . 

As shown in Figs. 8 and 9, Fig. 8 shows the variation of reward value 
with training frequency. The vertical axis represents the reward value, 
and the horizontal axis represents the training frequency. The newly 
opened training reward value oscillates within 0-100 steps. The neural 
network randomly selects actions, and as the training progresses, the 
reward value increases and eventually converges to the maximum value. 
The reason for the oscillation is that there is still a small probability of 
random action selection in the later stage of training. Fig. 9 shows the 
changes in the loss value during the training process. It can be seen that 
the overall loss value is decreasing, with a small fluctuation in the 
middle. The final loss value converges to close to 0, indicating that the 
predicted results of the model are very close to the true results in the 
training data. 

Algorithm 4 
The Process Of Rule 4  

Input: VS,pdS,Ds, endS 

1: O← {S| pdS <VS && Ds <endS} 
2: P← {S| pdS <VS} 
3: if Isempty(O) then 

4: SFC = argmins∈p
Ds − ends

∑vS
v=pdS(pk

ns + pe
s )

5: else 
6: SFC = argminS∈O [Ds − endS −

∑vS
v=pdS(p

k
ns + pe

s )]

7: end if  

Fig. 7. weight setting  
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6.3. Compared with Composite Rules 

To verify the effectiveness of D3QN, it was compared with each 
composite rule used. In order to ensure the generality of D3QN, the 
comparison was made both on the 15-node and 30-node networks. In 
addition, to eliminate randomness, this paper trained 50 times for each 
comparison and took the average value. This more effective comparison 
can avoid randomness, and the average value is more convincing, as 
shown in Fig 10 and Fig 11: 

Based on the test results shown in the above figure, it can be seen that 
D3QN maintains the lowest rejection rate compared to each individual 
composite scheduling rule. This highlights the ability of a trained 
intelligent agent to choose the current optimal rule for scheduling in 
different network environments, resulting in lower rejection rates. Of 
course, there is a certain difference between each rule, and it can be seen 
that the rational design of each rule and the appropriate selection pro-
cess in D3QN operation are the main reasons for performance. Overall, 

D3QN can select a composite rule that is more advantageous to the 
current situation at each scheduling time point, making it more effective 
than a single rule. 

6.4. Compared to Other Algorithms 

Apart from comparing with a single compound rule, this paper also 
compares with a random selection algorithm (i.e., randomly selecting a 
compound scheduling rule with equal probability at each scheduling 
point) and a genetic algorithm. In addition, in order to compare the 
superiority of D3QN in handling discrete spaces, D3QN was compared 
with traditional DQN, which used the same set of available actions in 
each state and compared the results with a node count of 15 and 30, as 

Algorithm 5 
Node Selection And Routing Optimization  

1:M = [] 
2: for m= 1: N do 
3: if This node satisfies constraint (2) then 
4: L = [],Ai= ends 

5: L← Dijkstra, Find the shortest time path from the previous node of the SFC to the candidate node and keep the pass nodes 
6: for s = L do 
7: Ai+=pe

s 
8: end for 
9: end if 
10:M←max(NT,Ai)

11: end for 
12: selected node = ArgminM  

Algorithm 6 
The Process Of D3QN  

1: Initialize experience pool D 
2: Initialize online network weight parametersθ 
3: Initialize target network weight parametersθ′= θ 
4: for episode do 
5: Generate state set{ACR, AUR, EOR, AOR}= {0, 0, 0, 0, 0}train parameters by inputting into the network. 
6: for I = 1:

∑n
i=1VSdo 

7: Select the action with the highest Q-value through the network model 
8: Execute action A, select the SFC with the highest priority, return it to the environment for scheduling, and generate St+1 
9: Generate reward Rt using Eq.(7)-(11) 
10: Store the quadruple < S,A,R, St + 1 > in the experience pool D 
11: Randomly sample a batch from the experience pool D 
12: Update online network parameters with gradient descent 
13: Update target network parameters at step Y,θ′= θ 
14: end for 
15: end for  

Fig. 8. Reward iteration  

Fig. 9. Changes in loss values during training  
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shown in Fig 12 and Fig 13. 
From the above figures, it can be seen that compared with the 

random action selection strategy and genetic algorithm, D3QN can 
almost always obtain lower total rejection numbers in all instances, 
which means that D3QN can select appropriate actions for compound 
rule selection at each rescheduling stage to achieve better scheduling 
results. Furthermore, in the instances, the agent performance of D3QN is 
superior to that of DQN, which may be due to DQN’s inability to accu-
rately distinguish different states in the network environment, thus 
inevitably deteriorating overall performance. Additionally, the dual- 

branch structure of D3QN can better reflect the advantages of each 
different action and select the optimal action. In summary, the D3QN 
agent is more reasonable and effective than the DQN agent in handling 
discrete state spaces. 

6.5. Comparison of node selection performance 

In order to verify the effectiveness of node selection in this article, we 
will compare the average single VNF routing cost and lateness rate with 
randomly selected available nodes. The average single VNF routing cost 
is the resource required for a route from one VNF to the next VNF, and its 
formula is as follows: 

ASV =

∑S
1

(∑k

1
Bs

k,k+1×Lk,k+1

k × js

)

S
(13) 

WhereBs
k,k+1represents the bandwidth requirement from the 

VNFk ∈ kto the VNFk+ 1 ∈ kof the SFCs ∈ S, andLk,k+1represents the 
routing path experienced between these two VNF.Next, this article will 
compare the performance of node selection with and without node se-
lection when the number of nodes is 30, as shown in Fig 14 and Fig 15. 

Referring to Fig 14 and Fig 15, where YD3QN represents node se-
lection function and ND3QN represents no node selection function. It 
can be seen that both SFC acceptance and single VNF routing cost have 
good performance, indicating that when there is a good node selection, 
VNF scheduling can be completed in a shorter time to improve VNF 

Fig. 10. the SFC rejection rate with 15 nodes  

Fig. 11. the SFC rejection rate with 30 nodes  

Fig. 12. the SFC rejection rate with 15 nodes  

Fig. 13. the SFC rejection rate with 30 nodes  

Fig. 14. the SFC rejection rate with 30 nodes  
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acceptance rate. At the same time, from Fig. 15, it can be seen that a 
good node selection can effectively reduce the cost of VNF routing and 
increase the revenue of operators. 

7. Conclusion 

The method proposed in this paper is based on rule-based D3QN 
scheduling to solve scheduling problems in networks. Five rules are 
specified to select an unprocessed VNF through rules and allocate it to a 
node through node and route selection at each scheduling time point. In 
addition, D3QN is used for training to select more suitable rules at each 
scheduling node. 

We also compared two network environments to verify the effec-
tiveness and generality of D3QN. The results show that after training, 
D3QN has better performance than other compound rules, random se-
lection strategies, and genetic algorithms. Furthermore, D3QN has a 
significant advantage over traditional DQN, which further demonstrates 
the superiority of D3QN in handling discrete state spaces.Finally, D3QN 
also has better results compared to genetic algorithms. 

In future work, more practical factors in scheduling will be studied, 
such as whether another virtual machine instantiates the VNF to be 
processed when there is not enough capacity on the node, or VNF 
migration and resource preemption between different VNF on virtual 
machines. In addition, the scheduling rules will be optimized, or other 
more advanced policy-based RL methods. 
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