
Computer Networks 246 (2024) 110418

Available online 10 April 2024
1389-1286/© 2024 Elsevier B.V. All rights reserved.

Low-latency Virtual Network function Scheduling Algorithm Based on Deep
Reinforcement Learning*

Zhiwei Liu, Zhaogang Shu *, Shuwu Chen, Yiwen Zhong, Jiaxiang Lin
Computer and Information College, Fujian Agriculture and Forestry University, Fuzhou, China

A R T I C L E I N F O

Key words:
Service function chain
Virtual network functions
Delay-aware
VNF scheduling
Deep reinforcement learning

A B S T R A C T

This paper addresses the problem of mapping, scheduling, and routing of virtual network functions (VNF) on a
service function chain (SFC) that is sensitive to latency in a virtual network. A scheduling algorithm for VNF is
proposed, which aims to minimize the SFC rejection rate while taking into account VNF mapping, scheduling,
and traffic routing during the scheduling process. To achieve this goal, a Markov decision process (MDP)-based
VNF scheduling model is established that guarantees SFC resource requirements are met. The model uses the
D3QN (Dueling Double DQN) algorithm based on composite rules to select the SFC at each scheduling time point,
and selects virtual nodes and routes using a routing optimization algorithm to minimize the SFC rejection rate.
We compare our algorithm with the single rule, DQN and genetic algorithm, and the simulation results show that
the proposed algorithm can reduce the rejection rate of SFC by approximately 8% compared to genetic
algorithms.

1. Introduction

With the development of network technology, 5G networks have
been further upgraded compared to traditional networks, resulting in
diversified network services. At the same time, the number of low-
latency networks is growing exponentially. Meeting the growing and
diverse needs of users for the network is currently the focus of the
communication industry.

In the traditional static network architecture, there are mainly two
problems. Firstly, the services provided by the network, such as firewalls
and WAN optimizers, are tightly coupled with hardware called mid-
dleboxes [1]. Different network functions require different hardware,
resulting in inflexible network functions and difficult maintenance,
which requires a significant amount of operational and capital expen-
ditures [2,3]. Secondly, the static network mode cannot meet the
differentiated performance requirements of new applications. To
address these problems, Network Function Virtualization (NFV) has
been introduced in 5G networks. The main function of NFV is to
decouple hardware and software from proprietary devices, making
software independent of any proprietary hardware. The decoupled
software is abstracted into independent network modules, called

Virtualized Network Functions (VNF) [4]. These VNF can be adaptively
placed on physical resources to provide the network node with the
corresponding VNF function. Therefore, based on a reliable VNF archi-
tecture in the network, it not only improves the flexibility of the
network, meets QOS requirements, makes reasonable use of network
resources, but also offsets dedicated hardware devices, thereby reducing
operators’ operational and capital expenditures [5,6].

In the architecture of NFV, a Service Function Chain (SFC) is formed
by several VNF instances arranged in a certain order to provide network
services on the network infrastructure [7]. However, configuring SFC on
NFV-supported network infrastructure is not a simple task, especially for
delay-sensitive SFC (e.g., tactile internet services), as these SFC need to
be combined in a specific order and completed within strict service
deadlines [8]. To meet such strict timing requirements, service providers
must effectively perform VNF placement and scheduling as well as
traffic routing for these SFC, a challenge also known as NFV resource
allocation (NFV-RA) [2,9]. Generally, the NFV-RA problem can be
divided into three main sub-problems: (a) VNF composition, (b) VNF
placement, and (c) VNF scheduling. The first sub-problem involves the
composition of SFC, the second sub-problem, aims to place the VNF in
the SFC onto nodes that support NFV and map the virtual links between

* This research work was supported in part by the Fujian Province Natural Science Foundation of China under Agreement 2020J01574 and Industry-university-
research Innovation Fund of China under Agreement 2021FNA05003.

* Corresponding Author
E-mail address: zgshu@fafu.edu.cn (Z. Shu).

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

https://doi.org/10.1016/j.comnet.2024.110418
Received 13 June 2023; Received in revised form 16 February 2024; Accepted 9 April 2024

mailto:zgshu@fafu-edu-cn-s.libyc.nudt.edu.cn:443
www-sciencedirect-com-s.libyc.nudt.edu.cn:443/science/journal/13891286
https://www-elsevier-com-s.libyc.nudt.edu.cn:443/locate/comnet
https://doi-org-s.libyc.nudt.edu.cn:443/10.1016/j.comnet.2024.110418
https://doi-org-s.libyc.nudt.edu.cn:443/10.1016/j.comnet.2024.110418
https://doi-org-s.libyc.nudt.edu.cn:443/10.1016/j.comnet.2024.110418
http://crossmark.crossref.org.libyc.nudt.edu.cn:80/dialog/?doi=10.1016/j.comnet.2024.110418&domain=pdf

Computer Networks 246 (2024) 110418

2

VNF to the underlying links. The third sub-problem focuses on deter-
mining the execution plan for the VNF in the SFC required to run a given
service.

Although the NFV-RA problem consists of three problems, the
placement and scheduling of VNF have always been the main research
focus [9]. However, most papers address VNF placement and scheduling
separately, which may not meet strict service deadlines in practical
situations. For example, [11,12,13] mainly solves the problem of VNF
placement, and secondly, there are also many problem models and so-
lutions for VNF scheduling, such as [8,19], which solve the delay sen-
sitive NS scheduling problem. In addition to individual processing, there
are also studies on the joint solution of VNF placement and scheduling
problems, such as references [20,21,22]. However, it should be noted
that in the above studies, network service scheduling did not consider
network routing and business transmission delay, which is an important
factor affecting delay sensitive SFC in practical environments.

In summary, there are two main issues in most existing research
papers on VNF scheduling. Firstly, VNF scheduling and VNF placement
are discussed separately. Secondly, the transmission delay of network
services in the network is not considered. Both of these issues are
important factors in delay sensitive SFC in practical situations. To
address these two issues, this article models and solves the VNF place-
ment and scheduling problem as a whole, facing complex challenges,
especially when considering traffic routing and transmission delay. This
is a very complex combinatorial optimization problem. Some papers
have developed various metaheuristic algorithms [25,29,30]. Although
these heuristic algorithms typically have fast implementation and
simplicity, their performance is largely influenced by problem charac-
teristics and may decrease with increasing network size. In addition, in
terms of runtime, metaheuristic algorithms such as genetic algorithms
(GA) may experience slower convergence rates during the iteration
process, especially when dealing with complex problems, resulting in
increased computational costs and runtime, and may prematurely fall
into local optima. Therefore, this article first represents the low latency
VNF scheduling problem as NP Hard’s mixed integer linear program-
ming (MILP), Then, the original problem is rephrased as a Markov de-
cision process problem, and a deep reinforcement learning framework is
proposed to solve this problem. Of course, the use of deep reinforcement
learning frameworks to set network parameters and states, actions, and
reward sets ensures that intelligent agents can make correct decisions in
different environments, which is also a complex challenge.

In this regard, the deep reinforcement learning scheduling algorithm
proposed in this article solves the placement and scheduling problems of
VNF, ensuring that delay sensitive network services are completed
within strict service deadlines to minimize the total number of unfin-
ished SFC. The main contributions are as follows:

A: This paper formulates the VNF scheduling problem as a Mixed-
Integer Linear Programming (MILP) problem. The problem takes
into account the joint mapping and scheduling of VNF while
considering route optimization. The objective is to improve the
acceptance rate of SFC and reduce routing overhead, all while
meeting the strict service deadlines of delay-sensitive SFC.

B: Design the state, action, and reward models for the D3QN to enable
the network to choose appropriate actions based on different current
states, aiming to maximize rewards. Additionally, integrate the
D3QN network with heuristic algorithms for route optimization,
with the goal of minimizing transmission time and routing overhead
while meeting SFC requirements as closely as possible.

C: Demonstrate the convergence of the proposed deep reinforcement
learning algorithm through an extensive set of experiments.
Compare the performance of the proposed method with meta-
heuristic algorithms, composite scheduling rules, and standard DQN.
Simulation results indicate that the proposed approach outperforms
in effectively addressing the delay-aware VNF scheduling problem.

The remainder of this paper is organized as follows. Section 2 de-
scribes related work,Section 3 describes the problem and divides it into
several sub-problems, while also discussing the interactions and impacts
between these sub problem problems and scheduling. Section 4 defines
the problem and proposes a rule-based deep reinforcement learning
scheduling model, and explains the methods for solving the problems of
VNF mapping, scheduling, and traffic routing. The results of numerical
experiments are given in Section 5. Finally, conclusions are drawn in
Section 6.

2. Related Work

In the context where multiple network functions can be accommo-
dated within a single node, and there are multiple VNF to be deployed
across the network, the rational placement of VNF on network nodes to
address issues such as VNF reusability or sharing for cost reduction poses
a significant challenge known as the VNF Placement Problem. For
instance, researchers have delved into the VNF Placement Problem with
reliability considerations, formulating two protection mechanisms as
Integer Linear Programming (ILP) models and proposing a Dynamic
Programming-based heuristic algorithm [10]. Hyodo et al. [11]
formalized the VNF Placement Problem as an ILP model and introduced
a heuristic algorithm to minimize layout and link costs, while allowing
for flexibility in VNF access sequence and cyclic SFC configurations.
Alahmad and Agarwal [12] presented two Mixed-Integer Linear Pro-
gramming (MILP) models addressing the cost and availability aspects of
VNF placement and type selection. In comparison to existing solutions,
their proposed approach reduces the overall cost of requested network
services without violating availability requirements. Feng et al. [13]
introduced an advanced heuristic algorithm involving VNF migration to
an alternative available node, effectively enhancing SFC utilization and
acceptance rates. Recognizing the limitations of existing deep rein-
forcement learning in generalizing across diverse network topologies,
Sun et al. [14] combined deep reinforcement learning with neural net-
works, enhancing the generalization capabilities of VNF placement
across different network topologies. Laaziz et al. [15] designed a
multi-objective Integer Linear Model to address VNF placement prob-
lems with different topology outcomes (linear or nonlinear). Rankothge
et al. [16] proposed two algorithms for VNF placement in response to
new service requests and adjustments to VNF placement and location in
response to changes in network traffic.

Additionally, when VNFs are placed on nodes, efficiently processing
them in the shortest possible time to ensure the completion of as many
SFC as possible within specified deadlines or to minimize the completion
time for all services constitutes the VNF Scheduling Problem. For
instance, Riera et al. [17] initially formulated the VNF Scheduling
Problem as a job-shop scheduling problem and proposed its mathe-
matical model without presenting a polynomial-time solution. Li and
Qian [18] introduced a grouping scheduling algorithm considering the
characteristics of grouped queues and SFC chains, given its lower
complexity. Chen and Wu [19] designed a processing and delay model
capturing communication delay behaviors in intermediate box pro-
cessing flows, followed by the development of two corresponding heu-
ristic scheduling algorithms. Mijumbi et al. [20] devised three greedy
algorithms and a tabu search algorithm to address the placement and
scheduling issues of VNF on supporting virtual machines. Assi et al. [21]
proposed an effective and energy-efficient method for VNF placement
and scheduling, utilizing heuristic algorithms to tackle the problem.

In the existing literature, reinforcement learning has been employed
to tackle combinatorial optimization problems. For instance, in the work
by [31], a reinforcement learning algorithm is proposed to determine a
variable action set at each decision state, capturing the varying execu-
tion times of actions to achieve delay-aware VNF scheduling. Bello et al.
[32] introduced a framework using neural networks and reinforcement
learning to address combinatorial optimization problems. In the context
of workshop scheduling, related research exists, such as [33] where T.

Z. Liu et al.

Computer Networks 246 (2024) 110418

3

Gabel et al. interpreted the job-shop scheduling problem as a sequential
decision problem handled by independent learning agents. Utilizing a
probability scheduling strategy, the intelligent agent adjusts parameters
using policy gradient reinforcement learning during continuous learning
to enhance the performance of the joint policy measured by the standard
scheduling objective function.In [34], Luo S. addressed the dynamic
flexible job-shop scheduling problem (DFJSP) by setting up a deep Q
network. Liu et al. [35] proposed a hierarchical and distributed archi-
tecture to solve the dynamic flexible job-shop scheduling problem,
introducing specialized state and action representations to handle var-
iable specifications in dynamic scheduling. Additionally, an alternative
reward shaping technique was developed to improve learning efficiency
and scheduling effectiveness.While the aforementioned workshop
scheduling problems bear some similarities to VNF scheduling, they do
not consider transmission delays between machines, which is a notable
distinction. Most existing work often separates VNF placement and
scheduling or neglects transmission delays, rendering it impractical to
meet strict service requirements. Therefore, this paper integrates VNF
placement and scheduling, considering route selection. A deep rein-
forcement learning agent is deployed to gather network state informa-
tion at each moment and make optimal VNF scheduling decisions based
on the defined reward function.

3. Problem Description and Model

3.1. Problem Description

The resource allocation of VNF mainly consists of: (a) VNF compo-
sition, (b) VNF placement, and (c) VNF scheduling. Regarding VNF
composition, a lot of existing literature have studied it and proposed
feasible solution [27,28]. this article will not describe it further. In this
section, we mainly focus on the joint problem of VNF placement and
scheduling for latency-sensitive SFC.

SFC is a chain of network functions composed of different VNF based
on customer demands at the beginning of the network service phase.
These SFC have a sequential and dependent execution order (the next
VNF can only start processing after the previous one is completed). For
example, there are one SFC with the execution order: VNF11 → VNF12
→ VNF13 → VNF14, in which VNF12 only start to run after the execu-
tion of VNF11 is completed.

The placement of VNF is performed based on the completion of the
SFC components. Its main purpose is to find a node position that meets
the constraints of the VNF and prepares for the subsequent scheduling
phase. The VNF scheduling is performed on the traffic of each SFC to
enable more SFC to be completed within the specified deadline.
Therefore, create a virtual network to place the VNF in the SFC and run
them on the virtual machines deployed on physical servers. This article
considers issues such as deploying the SFC along the chain on the
network, guiding the traffic between them while ensuring their order
and required bandwidth, and ultimately scheduling the VNF for their
traffic according to the deadline. It is assumed that each VNF instance on
each virtual machine can be shared by multiple SFC, but each virtual
machine can only handle the traffic of one SFC at a time as described
[20,22]. In the remainder of this paper, the problem is refined through
examples, and the impact on scheduling is discussed. Assuming an NFV
infrastructure consists of four virtual nodesNthat support VNFs and five
linksL,The available bandwidth of the links is 15Mbps, as shown in Fig 1.

Given a set of delay-sensitive SFC is composed of multiple VNF,the
virtual network functions are represented byF = {f1, f2, …, fm},and
VNFirepresents the function corresponding to the VNF, where1 ≤ i ≤ m,
For example,VNF1means that the function of the VNF isf1, and
EachVNFimust be mapped to a nodeNthat has the corresponding func-
tion. Since each VNF may have different processing capabilities in the
network, its processing time is represented as pt = w

pv, wherewis the size
of the traffic and pvis the processing capability of the VNF. Apart from

the processing time of nodes, the time taken for traffic to be transmitted
through a link can also be represented asDt = w

b, brepresents the required
link bandwidth, and according to the above description, the SFC in this
example can be represented by a 5-tuple, denoted as SFC = {VNF,w,b,pt,
D}VNFrepresents the set of VNF required for the SFC,wdenotes the size
of traffic,ptis the processing time of the node, andDis the deadline for the
SFC, Assuming that there are three SFC in the example, SFC = {SFC1,

SFC2, SFC3}SFC1 = {(VNF1, VNF4), 24Mb, 12Mbps, 2T, 10T}, SFC2 =

{(VNF2, VNF5), 12Mb, 12Mbps, 1T, 3T}, SFC3 = {(VNF2, VNF4), 24Mb,
6Mbps,2T,8T}.The three SFCs arrive at the network atT = 0as shown in
Fig 2. and in the first scenario where they are accepted in sequence, the
situation is shown in Fig 3.

They are all mapped to Node 1 at the same time and processed
sequentially in the order of SFC1, SFC2, and SFC3,at timeT = 0toT = 2,
Node 1 completed the processing of the firstVNFofSFC1, and traffic
began to be transmitted through virtual linkL1for a duration of 2s. AtT =

4,Node 3 began processing the nextVNF, and finally com-
pletedSFC1atT = 6, which is less than the deadlineDofSFC1and meets
the transmission delay requirements. Next, we look atSFC2. WhenT = 2,
Node 1 started processing the firstVNFofSFC2after completingSFC1, and
completed it atT = 3with a processing time of 1s. It also began traffic
transmission through virtual link L1, but since virtual linkL1was still
transmitting traffic forSFC1at this time, the remaining
bandwidth(15Mbps − 12Mbp < 12Mbps)of the virtual link was not suf-
ficient to meet the bandwidth demand, soSFC2had to wait, atT = 4after
the transmission ofSFC1is completed,SFC2starts to transmit and reaches
node 3 atT = 5. However, since the processing of SFC1is not yet
completed at this time, it has to wait again and complete atT = 7. But by
this time, it has exceeded the deadline ofSFC2and is therefore not
accepted. Finally,SFC3starts processing atT = 3and completes atT = 5.
At this time, the remaining bandwidth of virtual linkL1is15Mbps, which
satisfies the bandwidth required forSFC3to transmit. It arrives at node 3
atT = 9and finally completes processing at T = 11,which is the same
asSFC2. However, the final processing completion time exceeds the
deadline ofSFC3and cannot be accepted. It is obvious that in this situ-
ation, two of the threeSFCthat entered the network at the same time
cannot satisfy their latency requirements and are rejected. [8] also
proposes the partitioning of the VNF scheduling problem into distinct
sub-problems; however, their approach employs heuristic algorithms,

Fig. 1. network topology

Fig. 2. information of SFC

Z. Liu et al.

Computer Networks 246 (2024) 110418

4

which may lead to slower convergence rates and susceptibility to issues
like local optima when dealing with complex problems.

3.2. Mapping of Virtual Network Functions

In the previous section, the completion times ofSFC2and SFC3were
much greater than their deadlines, mainly due to the processing order
ofSFCand insufficient virtual link bandwidth, which resulted in exces-
sive waiting and delayedSFCprocessing time. To reduce the waiting time
on nodes and links, the first VNF ofSFC3is mapped to node 2 here,SFC1
andSFC3are processed simultaneously at T=0 as shown in Fig 4. At
T=2,SFC1and SFC3have both completed processing.SFC1continues to
propagate on the virtual linkL1, whileSFC3propagates on the virtual
linkL3. WhenT = 7,SFC1reaches node 2 and begins processing,
completing at T=6. Similar to the previous section,SFC2also completes
atT = 7, whileSFC3starts processing atT = 7 and completes atT = 9.
AlthoughSFC3has still not met the expected processing time, compared
to the previous scenario, its completion time is much earlier.

3.3. Processing Order of VNF

In sections A and B,SFC2still failed to complete within the deadline
becauseSFC1was always processed first, which caused SFC2, which is
very sensitive to time delays, to wait for two time units. This is not ideal.
Therefore, in this section, we consider scheduling to letSFC2process
traffic first, as shown in Fig 5. At T = 0,SFC2andSFC3start processing at
nodes 1 and nodes 2, respectively. At T = 1, SFC2completes processing,
is transmitted on virtual link L1, and reaches node 3 at T = 2,
completing traffic processing at T = 3. At this time, the delay require-
ment is satisfied, and it can be accepted in the network. SFC1and
SFC3also complete atT = 7 and T = 9, respectively.

3.4. Routing of Traffic

AlthoughSFC1andSFC2met the delay requirement in the previous
sections,SFC3still exceeded the deadline by one time unit. This is mainly
becauseSFC1arrived at node 3 first and node 3 was idle at that time, so it
processedSFC1beforeSFC3arrived, causing SFC3to wait. In order to solve
this problem, we choose a different routing strategy, as shown in Fig 6.

As before, at T = 0,SFC2andSFC3start processing at nodes 1 and nodes
2, respectively. AfterSFC2processing completes,SFC1is processed, and
the firstVNFis completed atT = 3. Then,SFC1traffic begins to be trans-
mitted on virtual linksL2 andL3instead ofL1, which changes the trans-
mission route. This allowsSFC3to arrive at node 3 first and start
processing atT = 6, completing processing at T = 8,thereby meeting the
delay requirement. After SFC3processing completes,SFC1starts pro-
cessing and completes atT = 10, meeting the delay requirement as well.
In this way, all three SFCs are completed within the specified time and
can be accepted by the network..

From the above scenarios, it can be seen that VNF mapping, pro-
cessing order, and routing selection all have certain impacts on their
respective schedules and thus affect the network acceptance rate. In the
remainder of this paper, we will explore how to solve these problems
and combine them for VNF scheduling.

4. Scheduling Model Based on DRL

In this section, we first introduce the relevant knowledge about
D3QN, and then define the mathematical model of the scheduling
problem for delay-sensitive service function chains based on the D3QN
model.

4.1. Related Background

a. DQN

The concept of DQN was first proposed by Mnih [23]. It can be
viewed as a neural network function approximator with weights. DQN
can handle complex decision-making processes with large and contin-
uous state spaces by directly taking raw data (state features) as input and
the function values of each state-action pair as output. The training and
improvement of DQN are mainly reflected in the following two aspects.
First, in the DQN model, the optimal action is selected by interacting
with the environment through policyπ, and a new environment is
formed and rewards are obtained by the action acting on the environ-
ment, forming a new tuple< S,A,R,St+ 1 >, which will be stored in the
experience pool for learning by DQN. When the capacity of the

Fig. 3. Normal sequential processing

Fig. 4. Mapping of VNF

Fig. 5. Processing order of VNF

Fig. 6. Routing of Traffic

Z. Liu et al.

Computer Networks 246 (2024) 110418

5

experience pool is full, old experiences will be replaced by new ones, and
each transition can be used multiple times to update the parameters,
thereby achieving better data efficiency. The second is the target
network. In the target network, the network parameters are updated
every time during training to make it more stable during training. The
DQN network calculates the parameters of the online network are
updated according to the target values calculated formula [37],As
follow, whereγis the discount factor [0,1],a′is the learning rate, andθ′is
the network parameter.

yi = ri + γa′maxQ(s′, a′; θ′) (1)

b. Double DQN

However, traditional DQN also has some problems, such as over-
estimation [24]. The reason for the overestimation problem is that in the
learning process of the neural network, bias and variance problems may
occur. Bias refers to the insufficient fitting ability of the model itself,
which cannot accurately fit the true Q value function. Variance refers to
overfitting of the model to the training data during the training process,
resulting in insufficient generalization ability for unknown data. This
makes the estimated value function larger than the true value function,
so that the worst actual value may become the best estimated value,
while the best actual value may become the worst estimated value. To
avoid this problem, the Double DQN form is adopted [38]. In DQN, a
new network is added, whose structure is the same as the original
network, but uses different network parameters. These two networks
have different uses. The original network is used to control the agent’s
collection of learned experiences and selection of actions, while the new
network is used to calculate the value of actions. This decoupling of
selection and evaluation reduces overestimation, making learning more
stable. The formula in Eq.(2):

yi = ri + γQ(s′, arga′maxQ(s′, a′; θ); θ′) (2)

c. Dueling DQN

Next, in DQN, the neural network outputs the value of actions, but
evaluating the value of actions alone may not be accurate. Because the
value of actionsQ(S, A)is related to the State and the Action, but the
degree of this relationship or influence is not the same. We hope to
reflect the difference between these two factors. Therefore,the Dueling
DQN algorithm improves DQN from the network structure [36].The
neural network output of the action value function can be divided into
state value function and advantage function. The formula in Eq.(3):

Qπ(s, a) = Vπ(s) + Aπ(s, a) (3)

Vπ(s)represents the state value function, which is mainly equal to the
average of all action probabilities in that state, i.e., the sum of all action
values multiplied by their probabilities. Qπ(s, a)value represents the
action value in that state. The advantage function Aπ(s, a) = Qπ(s, a) −
Vπ(s) corresponds to the average high or low of each action, so that
action values that are higher than the average will be even higher, while
those that are lower will be even lower, which can speed up the
convergence of the network. Considering the above description, it is
proposed to use D3QN as the network model for training in this paper,
which is expected to achieve better results.

4.2. Problem Definition and Formulas

In the physical network graph G (N, L), where N represents virtual
nodes used to host and run different types of VNF, and L represents
virtual links connecting every two nodes. There is a set of SFC, and each
SFC requests its traffic to be processed by the network, which needs to
satisfy the following requirements: a) each VNF of each SFC must be

mapped to a node capable of processing its function; b) each VNF of each
SFC is processed in order, and the next VNF cannot be processed until
the previous one is completed; c) the bandwidth of the link must meet
the traffic demand. The purpose of this paper is to find the optimal node
to map and schedule VNF while meeting the above requirements, in
order to maximize the reception rate of SFC in the network.

The main parameters involved and their meanings are shown in
Table 1.

This paper defines the following decision variables for the joint VNF
placement and scheduling problem

Knδ
ks ∈ {0, 1}is a binary variable,indicating Whether the VNFk ∈ kof

the SFCs ∈ Sis mapped to the n noden ∈ Nat time stampδ,δ ∈ δ to start
processing.(1)or not(0)

lseij ∈ {0, 1}is a binary variable,indicating Whether the SFCs ∈ Svir-
tual link e ∈ Eis routed on the link (i, j) ∈ L, if yes, 1, otherwise 0.

js ∈ {0, 1}is a binary variable,indicating Whether the SFCs ∈ Sis
accepted by the network, that is, whether it can be completed within the
specified time.(1)or not (0)

Next, let’s consider the constraints required for optimizing the
objective and its constraints.

We aim to schedule SFC while ensuring constraints, therefore the
objective is to maximize SFC acceptance rate, which is equivalent to
minimizing SFC rejection rate:

MaximizeΣs∈Sjs

st

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 : Knδ
ks f k

s = fn

C2 :
∑

n∈N
Knδ

k+1s ≤ 1 −
∑

n′∈N

Kn′δ
ks

C3 : Knδ
ks = 1 − Knδ

k′S′, k, k′ ∈ K, s, s′ ∈ S

C4 :
∑

k∈K
pk

ns +
∑

e∈E
pe

s ≤ Ds, s ∈ S

C5 : lse
ij bk,k+1 ≤ Cij, e ∈ E, (i, j) ∈ L

C6 :
∑

k∈K
Knδ

ks = 1

(4)

The optimization objective of this article is mainly subject to the
constraints C1~C6. C1 ensures that the VNF types on the SFC are the

Table 1
SUMMARY OF KEY NOTATIONS

parameters

G′(K,
E)

Represents an SFC forwarding graph,

F Type collection of VNF
ft VNF instance type ft ∈ F
Cij Available capacity between link i j
S Set of SFC
N Set of node
δ timestamp
bk,k+1 Required capacity of virtual links between The VNFk ∈ k and The

VNFk + 1 ∈ k in each SFC
ws Flow size of SFCs ∈ S
Ds Deadline of SFCs ∈ S
fk
s The type of the VNFk ∈ kof the SFCs ∈ S,fk

s ∈ ft
fn The available instantiate types on node nn ∈ N,fn ∈ ft
VS The number of VNF in the SFCs ∈ S
pk

ns The average processing time of the VNFk ∈ k of the SFC s ∈ Son the
noden ∈ N

pe
s The transit time of the traffic on the virtual link

pds The number of VNF processed for the SFC
endS The time when the last VNF of the SFC s ∈ Swas completed.
ut

n Represents the end time when the last VNF has been processed on node
nn ∈ N.

ut
n,k Represents the time taken for the VNFk ∈ kthat has been processed on node

nn ∈ N.

Z. Liu et al.

Computer Networks 246 (2024) 110418

6

same as the types of VNF instances mapped to the node. C2 states that
the VNFk+ 1 ∈ kcannot be processed while the VNFk ∈ kof the SFC is
still being processed. C3 ensures that a node’s VNF instance cannot
process VNF of another SFC while processing the current SFC VNF. C4
ensures that the remaining shortest completion time of the SFC can meet
the deadline.C5 requires that the virtual link capacity required by the
SFC must be less than the capacity of the physical link. C6 specifies that
the VNF of the SFC can only be mapped to one node at the same time.

5. Scheduling Algorithm Based On D3QN

In this section, we first present the state definition of D3QN, followed
by the candidate scheduling rules (actions) and reward definitions for
each scheduling point. Then, we explain the node and route selection
process, and finally, we discuss the network structure and training
method of D3QN.

5.1. State Definition

Generally, the number of SFC or network nodes is usually very large.
If we use the state features of each SFC or network at every moment as an
indicator, it may lead to a large input volume, which can cause diffi-
culties in adapting and training D3QN. Therefore, we propose to
extracted the features of each SFC and their average value is calculated
to facilitate the training of D3QN and make it easier to extend to other
environments. Therefore, the state is defined as follows:

(1) TheACRdenotes the probability of successfully mapped VNF
within each SFC relative to the total number of VNF.:

ACR =

∑s
1

pdS
VS

s
(5)

(2) TheAURrepresents the total time spent processing VNF on the
average node compared to the total time the node runs:

AUR =

∑n
1

∑k

1(ut
n,k)

ut
n

n
(6)

(3) TheEORrepresents the potential SFC rejection rate at the current
scheduling time point, where if the estimated shortest remaining
processing time of the unfinished part (i.e., the remaining un-
processed VNF) of the SFC exceeds the specified deadline, even if
the SFC has not exceeded the deadline at this time, it is also
counted as a potential rejection. The main process is as follows:

In Algorithm 1, the third line represents finding the SFC that has not
yet completed the mapping, while the fifth to tenth lines represent the
estimated processing time for the remaining VNF in the unfinished SFC,
and determine whether the SFC can complete the processing within the
expected processing time

(1) TheAORrefers to the ratio of SFC that have exceeded their pro-
cessing deadline to the total number of SFC. The algorithm
overview is as follows:

In Algorithm 2, lines 3 to 7 represent all SFC in the loop to determine
whether the current processing time has exceeded the deadline. If it has
exceeded, the N value is added by 1 and divided by the total number of
SFC

In order to mitigate the wide range of input variations, reducing the
performance and generality of the agent, this paper sets the values of the
aforementioned states within the range [0, 1] and takes their averages.
This approach aims to enhance the agent’s adaptability to different
networks. Additionally, the average completion rateACRof the SFC and
the average utilization rate AURof nodes are set to better capture the
moment-to-moment changes in network states. This is done to enrich the
rewards and avoid sparsity in the reward structure.ACRandAURalso
effectively reflect the current SFC completion status, enabling the agent
to make informed decisions. The actual completion rate AORreflects the
quantity of existing incomplete SFC in the current network, while the
expected completion rateEOR represents the anticipated number of SFC
that may remain incomplete. These metrics provide direct insights into
the current network state, allowing the agent to make better decisions.
However, due to their limited variability, they may result in sparse re-
wards. Hence, they need to be complemented byACRand AURto provide
a comprehensive understanding of the current network state for the
agent.

5.2. Action Definition

In most existing research, the applicability of single-rule scheduling
algorithms is limited, as they may not effectively cater to all states.
Evolutionary algorithms like genetic algorithms often incur lengthy
processing times. Therefore, this paper introduces Composite Rule
Scheduling, presenting five rules tailored for intelligent agents. Different
rules are designed to address various network state scenarios. During
each scheduling iteration, the algorithm selects the rule with the highest
current reward value based on the network state. Subsequently, the
chosen rule is employed to identify the most suitable SFC for processing
in the current iteration, laying the groundwork for subsequent route
optimization.

Algorithm 1
The Calculation Process Of EOR

Input: VS,pdS,Ds, endS

Output: EOR
1: N= 0
2: for k = 1: n do
3: if pdS<VSthen
4: T= 0
5: for i =pdS+1:VSdo
6: T += (pk

nsþpe
s)

7: end for
8: if endS+T >Dsthen
9: N+=VS- i
10: Break
11: end if
12: end if
13:end for

14:EOR =
N

∑S
1VS

15: return EOR

Z. Liu et al.

Computer Networks 246 (2024) 110418

7

(1) Rule 1:

For Rule 1, first, the deadline of each SFC is compared in order, and
the SFC with the smallest deadline is selected as the highest priority. If
there are deadlines that are the same, the SFC with the largestendSvalue
is selected as the highest priority, because if the currentendSof an SFC is
greater, it means there is less time available to process subsequent VNF.

(2) Rule 2:

For Rule 2, this paper will use scheduling based on the lowest
slackness as high priority, because slackness reflects the urgency of a
task, and the lower the slackness, the less available time for the task and
the higher the urgency.

(3) Rule 3:

For Rule 3, we divide it into two cases depending on whether there
exists an SFC whoseendSvalue exceeds the deadline,that is, O is not
empty. If such an SFC exists, the SFC with the smallest slack time is given
the highest priority. If not, each SFC remaining time is divided by the
remaining number of operations, and the smallest value is assigned the
highest priority. The specific Algorithm 3 is shown below:

(4) Rule 4:

Similar to Rule 3, two scenarios are also handled in this case. If O is
empty, the remaining time is divided by the estimated average pro-
cessing time of SFC. Otherwise, the minimum slack time is used as the
selection criterion. The specific Algorithm 4 is as follows:

(5) Rule 5:

The expected shortest processing time refers to calculating how
much time is needed to process each unfinished SFC.

5.3. Reward

Since the objective of this article is to minimize the rejection rate, a
reward functionRtbased on this objective value is designed. Each SFC
must be completed as much as possible within its deadline to reduce the

rejection rate and obtain more rewards. However, since the change in
the rejection rate can only be known when the entire SFC exceeds its
deadline or has been processed, the reward may become sparse.
Therefore, this article defines returns by considering the values of the
four key state characteristics of the current state AOR, EOR, ACR, AUR,
and the next state AOR’, EOR’, ACR’, AUR’.Rtas follows:

rt =

⎧
⎨

⎩

1 if AOR′ < AOR
− 1 if AOR′ < AOR
f (EOR,EOR′,ACR,ACR′) if AOR′ = AOR

(7)

WhenAOR′ = AORwe need to define an auxiliary functionf(EOR,
EOR′,ACR,ACR′)to further determine the value of rt.

rt =

⎧
⎨

⎩

1 if EOR′ < EOR
− 1 if EOR′ < EOR
g(ACR,ACR′) if EOR′ = EOR

(8)

When EOR′ = EOR,rt is as follows:

rt =

⎧
⎨

⎩

0 if ACR′ > ACR
1 if ACR′ > 1.1 × ACR
− 1 otherwise

(9)

ForAUR, the reward rt′ in this article is set as follows:

rt′ = eAUR′− AUR (10)

The final reward R is set as follows

R = rt + rt′ (11)

5.4. Node Selection and Routing Optimization

According to the above description, the D3QN actions can be used to
select the highest priority SFC for mapping. However, selecting the
optimal node and routing for the SFC to meet the latency requirements is
also a critical issue. Therefore, the rest of this section will describe how
node and routing selection is performed in this paper.

a. Node Selection

The purpose of node selection is to choose a node that can handle the
VNF type instance and can start processing its traffic as early as possible.
This is because only by processing the traffic as early as possible can the

Algorithm 2
The Calculation Process of AOR

Input: VS,pdS,Ds, endS

Output: AOR
1:N= 0
2: for k = 1: n do
3: ifendS > Dsthen
4: N+=1
5: end if
6: end for

7:AOR =
N

∑S
1VS

8: return AOR

Algorithm 3
The Process Of Rule 3

Input:VS,pdS,Ds, endS

1: O←{S| pdS <VS && Ds <endS}
2: P← {S| pdS <VS}
3: if Isempty(O) then

4: SFC = argminS∈P
Ds − endS

VS − pdS
5: else
6: SFC = argminS∈O [Ds − endS −

∑vS
v=pdS

(pk
ns + pe

s)]

7: end if

Z. Liu et al.

Computer Networks 246 (2024) 110418

8

completion time be shorter and the latency requirement be met. This is
described by the following formula:

minNmax(NT,Ai) (12)

NTrepresents the completion time of the last VNF processed on node
N,Airepresents the time when the traffic of the selected SFC arrives at
node N.max(NT, Ai)is used to represent the earliest start time for the
traffic to arrive at that node. Therefore, minNmax(NT, Ai)represents
selecting the earliest available among all available nodes.

b. Routing Optimization

The above formula represents the node selection, but currently, it is
not possible to determineAi, which is the time when the traffic can reach
the next candidate node after flowing through the link from the previous
node. Therefore, the Dijkstra algorithm is used to find the shortest time
path between two nodes while ensuring that the physical link capacity
meets the virtual link when routing traffic, in order to determineAi.
Because it is to find the shortest time path between two points, the path
weight is set to the link transmission time plus the waiting time, as
shown in Fig 7.

The traffic shown on Fig 7(a) is from the source node A to the
destination node C, and the transmission time of the traffic on the link is
one time node. Link L1 needs to wait for 3t nodes due to insufficient
resources from T=0 to T=3, so the weight of L1 is 4, while the weight of
L2 is 1 as it has sufficient resources. The values of nodes A, B, and C are
0, 1, and 4, respectively. When taking B as the starting point, as shown in
Fig 7(b), because the processing time of L3 is from T=0 to T=1 and the
value of node B is 1, L3 does not need to wait, so the weight of L3 is 1.
Therefore, the values of nodes A, B, and C are updated to 0, 1, and 2.
Hence, the shortest time path from A to C is 2. The specific node and
routing selection algorithm are shown as follows:

In Algorithm 5, from lines 2 to 5, all nodes are looped to find all
nodes that meet the constraint condition (2). The Dijkstra algorithm is
used to calculate the distance between the node mapped by the previous
VNF on the SFC and the available nodes that need to be mapped to the
current VNF. From lines 6 to 10, the time from the previous node to all
available nodes is calculated as AiFinally,Aiis compared withNTto find a
larger value and assigned to M, where M represents the earliest start
time of the node, and line 12 represents the next processing node of the
current VNF that finds the earliest start node.

5.5. D3QN Network Architecture and Training

The network structure of D3QN used in this article consists of an
input layer and a hidden layer fully connected, which are then split into
two branches: the advantage branch and the value branch. The Q value
of each sub-action is obtained by aggregating the value branch and the
corresponding advantage branch. respectively. The discount factor is
0.9, the learning rate is 0.0002,The Batch size is 64 and the exploration
rate is set to 0.5. In the training process, the scheduling point is defined
as the beginning of each operation, and the training method and overall
framework based on D3QN are shown in the following Algorithm 6.

6. Simulation and Performance Analysis

This section conducts simulations and performance analysis on the
proposed rule-based selection D3QN scheduling algorithm. The paper
compares the performance of D3QN with each composite rule in
different scenarios and demonstrates its superiority over traditional
DQN algorithm and genetic algorithm.

6.1. Parameter Settings

To conduct the evaluation, a network model similar to the one in
[25] was designed. One is a medium-sized network consisting of 15 fully
connected nodes, and 15, 20, 25, 30 and 35 randomly generated SFC
were introduced into the network. The other is a large network con-
sisting of 30 fully connected nodes, and 30, 35, 40, 45 and 50 randomly
generated SFC were introduced into the network. The available band-
width of each link is fixed at 50Mbps. In this article, it is assumed that
each VNF can be processed on at least one VM node, and each VM node
has the ability to host 2-3 VNF. For each SFC, random traffic generation (
[25-75]Mbits), bandwidth requirements ([15-25]Mbps), and variable
VNF ([2-4]) were used as service compositions. Their deadlines were set
to 4/3 times the sum of their processing and transmission delays,
without considering any waiting delays [26].

6.2. The training process of D3QN

Test D3QN on a predefined instance containing 15 nodes and 35 SFC
insertions. The total reward results obtained by D3QN in the first 300
training steps are shown in Fig 8 and Fig 9 .

As shown in Figs. 8 and 9, Fig. 8 shows the variation of reward value
with training frequency. The vertical axis represents the reward value,
and the horizontal axis represents the training frequency. The newly
opened training reward value oscillates within 0-100 steps. The neural
network randomly selects actions, and as the training progresses, the
reward value increases and eventually converges to the maximum value.
The reason for the oscillation is that there is still a small probability of
random action selection in the later stage of training. Fig. 9 shows the
changes in the loss value during the training process. It can be seen that
the overall loss value is decreasing, with a small fluctuation in the
middle. The final loss value converges to close to 0, indicating that the
predicted results of the model are very close to the true results in the
training data.

Algorithm 4
The Process Of Rule 4

Input: VS,pdS,Ds, endS

1: O← {S| pdS <VS && Ds <endS}
2: P← {S| pdS <VS}
3: if Isempty(O) then

4: SFC = argmins∈p
Ds − ends

∑vS
v=pdS(pk

ns + pe
s)

5: else
6: SFC = argminS∈O [Ds − endS −

∑vS
v=pdS(p

k
ns + pe

s)]

7: end if

Fig. 7. weight setting

Z. Liu et al.

Computer Networks 246 (2024) 110418

9

6.3. Compared with Composite Rules

To verify the effectiveness of D3QN, it was compared with each
composite rule used. In order to ensure the generality of D3QN, the
comparison was made both on the 15-node and 30-node networks. In
addition, to eliminate randomness, this paper trained 50 times for each
comparison and took the average value. This more effective comparison
can avoid randomness, and the average value is more convincing, as
shown in Fig 10 and Fig 11:

Based on the test results shown in the above figure, it can be seen that
D3QN maintains the lowest rejection rate compared to each individual
composite scheduling rule. This highlights the ability of a trained
intelligent agent to choose the current optimal rule for scheduling in
different network environments, resulting in lower rejection rates. Of
course, there is a certain difference between each rule, and it can be seen
that the rational design of each rule and the appropriate selection pro-
cess in D3QN operation are the main reasons for performance. Overall,

D3QN can select a composite rule that is more advantageous to the
current situation at each scheduling time point, making it more effective
than a single rule.

6.4. Compared to Other Algorithms

Apart from comparing with a single compound rule, this paper also
compares with a random selection algorithm (i.e., randomly selecting a
compound scheduling rule with equal probability at each scheduling
point) and a genetic algorithm. In addition, in order to compare the
superiority of D3QN in handling discrete spaces, D3QN was compared
with traditional DQN, which used the same set of available actions in
each state and compared the results with a node count of 15 and 30, as

Algorithm 5
Node Selection And Routing Optimization

1:M = []
2: for m= 1: N do
3: if This node satisfies constraint (2) then
4: L = [],Ai= ends

5: L← Dijkstra, Find the shortest time path from the previous node of the SFC to the candidate node and keep the pass nodes
6: for s = L do
7: Ai+=pe

s
8: end for
9: end if
10:M←max(NT,Ai)

11: end for
12: selected node = ArgminM

Algorithm 6
The Process Of D3QN

1: Initialize experience pool D
2: Initialize online network weight parametersθ
3: Initialize target network weight parametersθ′= θ
4: for episode do
5: Generate state set{ACR, AUR, EOR, AOR}= {0, 0, 0, 0, 0}train parameters by inputting into the network.
6: for I = 1:

∑n
i=1VSdo

7: Select the action with the highest Q-value through the network model
8: Execute action A, select the SFC with the highest priority, return it to the environment for scheduling, and generate St+1
9: Generate reward Rt using Eq.(7)-(11)
10: Store the quadruple < S,A,R, St + 1 > in the experience pool D
11: Randomly sample a batch from the experience pool D
12: Update online network parameters with gradient descent
13: Update target network parameters at step Y,θ′= θ
14: end for
15: end for

Fig. 8. Reward iteration

Fig. 9. Changes in loss values during training

Z. Liu et al.

Computer Networks 246 (2024) 110418

10

shown in Fig 12 and Fig 13.
From the above figures, it can be seen that compared with the

random action selection strategy and genetic algorithm, D3QN can
almost always obtain lower total rejection numbers in all instances,
which means that D3QN can select appropriate actions for compound
rule selection at each rescheduling stage to achieve better scheduling
results. Furthermore, in the instances, the agent performance of D3QN is
superior to that of DQN, which may be due to DQN’s inability to accu-
rately distinguish different states in the network environment, thus
inevitably deteriorating overall performance. Additionally, the dual-

branch structure of D3QN can better reflect the advantages of each
different action and select the optimal action. In summary, the D3QN
agent is more reasonable and effective than the DQN agent in handling
discrete state spaces.

6.5. Comparison of node selection performance

In order to verify the effectiveness of node selection in this article, we
will compare the average single VNF routing cost and lateness rate with
randomly selected available nodes. The average single VNF routing cost
is the resource required for a route from one VNF to the next VNF, and its
formula is as follows:

ASV =

∑S
1

(∑k

1
Bs

k,k+1×Lk,k+1

k × js

)

S
(13)

WhereBs
k,k+1represents the bandwidth requirement from the

VNFk ∈ kto the VNFk+ 1 ∈ kof the SFCs ∈ S, andLk,k+1represents the
routing path experienced between these two VNF.Next, this article will
compare the performance of node selection with and without node se-
lection when the number of nodes is 30, as shown in Fig 14 and Fig 15.

Referring to Fig 14 and Fig 15, where YD3QN represents node se-
lection function and ND3QN represents no node selection function. It
can be seen that both SFC acceptance and single VNF routing cost have
good performance, indicating that when there is a good node selection,
VNF scheduling can be completed in a shorter time to improve VNF

Fig. 10. the SFC rejection rate with 15 nodes

Fig. 11. the SFC rejection rate with 30 nodes

Fig. 12. the SFC rejection rate with 15 nodes

Fig. 13. the SFC rejection rate with 30 nodes

Fig. 14. the SFC rejection rate with 30 nodes

Z. Liu et al.

Computer Networks 246 (2024) 110418

11

acceptance rate. At the same time, from Fig. 15, it can be seen that a
good node selection can effectively reduce the cost of VNF routing and
increase the revenue of operators.

7. Conclusion

The method proposed in this paper is based on rule-based D3QN
scheduling to solve scheduling problems in networks. Five rules are
specified to select an unprocessed VNF through rules and allocate it to a
node through node and route selection at each scheduling time point. In
addition, D3QN is used for training to select more suitable rules at each
scheduling node.

We also compared two network environments to verify the effec-
tiveness and generality of D3QN. The results show that after training,
D3QN has better performance than other compound rules, random se-
lection strategies, and genetic algorithms. Furthermore, D3QN has a
significant advantage over traditional DQN, which further demonstrates
the superiority of D3QN in handling discrete state spaces.Finally, D3QN
also has better results compared to genetic algorithms.

In future work, more practical factors in scheduling will be studied,
such as whether another virtual machine instantiates the VNF to be
processed when there is not enough capacity on the node, or VNF
migration and resource preemption between different VNF on virtual
machines. In addition, the scheduling rules will be optimized, or other
more advanced policy-based RL methods.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

References

[1] J Sherry, S Ratnasamy, J S At, Tech. Rep, EECS Department, University of
California, Berkeley, 2012.

[2] R Mijumbi, J Serrat, J L Gorricho, et al., Network function virtualization: State-of-
the-art and research challenges [J], IEEE Communications surveys & tutorials 18
(1) (2015) 236–262.

[3] R Mijumbi, J Serrat, J L Gorricho, et al., Management and orchestration challenges
in network functions virtualization [J], IEEE Communications Magazine 54 (1)
(2016) 98–105.

[4] B Han, V Gopalakrishnan, L Ji, et al., Network function virtualization: Challenges
and opportunities for innovations [J], IEEE communications magazine 53 (2)
(2015) 90–97.

[5] Z Shu, T. Taleb, A novel QoS framework for network slicing in 5G and beyond
networks based on SDN and NFV [J], IEEE Network 34 (3) (2020) 256–263.

[6] Z Shu, T Taleb, J. Song, Resource allocation modeling for fine-granular network
slicing in beyond 5G systems [J], IEICE Transactions on Communications 105 (4)
(2022) 349–363.

[7] X Fu, F R Yu, J Wang, et al., Service function chain embedding for NFV-enabled IoT
based on deep reinforcement learning [J], IEEE Communications Magazine 57 (11)
(2019) 102–108.

[8] H A Alameddine, L Qu, C. Assi, Scheduling service function chains for ultra-low
latency network services [C], //, in: 2017 13th international conference on
network and service management (CNSM), IEEE, 2017, pp. 1–9.

[9] J G Herrera, J F Botero, Resource allocation in NFV: A comprehensive survey [J],
IEEE Transactions on Network and Service Management 13 (3) (2016) 518–532.

[10] L Fang, X Zhang, K Sood, et al., Reliability-aware virtual network function
placement in carrier networks [J], Journal of Network and Computer Applications
154 (2020) 102536.

[11] N Hyodo, T Sato, R Shinkuma, et al., Virtual network function placement for
service chaining by relaxing visit order and non-loop constraints [J], IEEE Access 7
(2019) 165399–165410.

[12] Y Alahmad, A Agarwal, T. Daradkeh, Cost and Availability-Aware VNF Selection
and Placement for Network Services in NFV [C], //, in: 2020 International
Symposium on Networks, Computers and Communications (ISNCC), IEEE, 2020,
pp. 1–6.

[13] H Feng, Z Shu, T Taleb, et al., An Aggressive Migration Strategy for Service
Function Chaining in the Core Cloud [J], IEEE Transactions on Network and
Service Management (2022).

[14] P Sun, J Lan, J Li, et al., Combining deep reinforcement learning with graph neural
networks for optimal VNF placement [J], IEEE Communications Letters 25 (1)
(2020) 176–180.

[15] L Laaziz, N Kara, R Rabipour, et al., FASTSCALE: A fast and scalable evolutionary
algorithm for the joint placement and chaining of virtualized services [J], Journal
of Network and Computer Applications 148 (2019) 102429.

[16] W Rankothge, F Le, A Russo, et al., Optimizing resource allocation for virtualized
network functions in a cloud center using genetic algorithms [J], IEEE Transactions
on Network and Service Management 14 (2) (2017) 343–356.

[17] J F Riera, E Escalona, J Batalle, et al., Virtual network function scheduling: Concept
and challenges [C], //, in: 2014 international conference on smart communications
in network technologies (SaCoNeT), IEEE, 2014, pp. 1–5.

[18] X Li, C. Qian, Low-complexity multi-resource packet scheduling for network
function virtualization [C], //, in: 2015 IEEE Conference on Computer
Communications (INFOCOM), IEEE, 2015, pp. 1400–1408.

[19] Y Chen, J. Wu, Flow scheduling of service chain processing in a NFV-based network
[J], IEEE Transactions on Network Science and Engineering 8 (1) (2020) 389–399.

[20] R Mijumbi, J Serrat, J L Gorricho, et al., Design and evaluation of algorithms for
mapping and scheduling of virtual network functions [C], //, in: Proceedings of the
2015 1st IEEE conference on network softwarization (NetSoft), IEEE, 2015,
pp. 1–9.

[21] C Assi, S Ayoubi, N El Khoury, et al., Energy-aware mapping and scheduling of
network flows with deadlines on VNFs [J], IEEE Transactions on Green
Communications and Networking 3 (1) (2018) 192–204.

[22] J Li, W Shi, P Yang, et al., On dynamic mapping and scheduling of service function
chains in SDN/NFV-enabled networks [C], //, in: 2019 IEEE Global
Communications Conference (GLOBECOM), IEEE, 2019, pp. 1–6.

[23] V Mnih, K Kavukcuoglu, D Silver, et al., arXiv preprint, 2013.
[24] H. Hasselt, Double Q-learning [J], in: Advances in neural information processing

systems, 23, 2010.
[25] L Qu, C Assi, K. Shaban, Delay-aware scheduling and resource optimization with

network function virtualization [J], IEEE Transactions on communications 64 (9)
(2016) 3746–3758.

[26] N Promwongsa, A Ebrahimzadeh, R H Glitho, et al., Joint VNF placement and
scheduling for latency-sensitive services [J], IEEE Transactions on Network Science
and Engineering 9 (4) (2022) 2432–2449.

[27] S Clayman, E Maini, A Galis, et al., The dynamic placement of virtual network
functions [C], //, in: 2014 IEEE network operations and management symposium
(NOMS), IEEE, 2014, pp. 1–9.

[28] M T Beck, J F Botero, Coordinated allocation of service function chains [C], //, in:
2015 IEEE global communications Conference (GLOBECOM), IEEE, 2015, pp. 1–6.

[29] F Pezzella, G Morganti, G. Ciaschetti, A genetic algorithm for the flexible job-shop
scheduling problem [J], Computers & operations research 35 (10) (2008)
3202–3212.

[30] C Pham, N H Tran, CS Hong, Virtual network function scheduling: A matching
game approach [J], IEEE Communications Letters 22 (1) (2017) 69–72.

[31] J Li, W Shi, N Zhang, et al., Delay-aware VNF scheduling: A reinforcement learning
approach with variable action set [J], IEEE Transactions on Cognitive
Communications and Networking 7 (1) (2020) 304–318.

[32] Bello I, Pham H, Le Q V, et al. Neural combinatorial optimization with
reinforcement learning [J]. ar**v preprint ar**v:1611.09940, 2016.

[33] T Gabel, M. Riedmiller, Distributed policy search reinforcement learning for job-
shop scheduling tasks [J], International Journal of production research 50 (1)
(2012) 41–61.

[34] S. Luo, Dynamic scheduling for flexible job shop with new job insertions by deep
reinforcement learning [J], Applied Soft Computing 91 (2020) 106208.

[35] R Liu, R Piplani, C. Toro, Deep reinforcement learning for dynamic scheduling of a
flexible job shop [J], International Journal of Production Research 60 (13) (2022)
4049–4069.

[36] Z Wang, T Schaul, M Hessel, et al., Dueling network architectures for deep
reinforcement learning [C], //, in: International conference on machine learning,
PMLR, 2016, pp. 1995–2003.

[37] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018.
[38] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement learning with double Q-

learning, 2, AAAI, Phoenix, AZ, 2016, p. 5.

Fig. 15. Average single VNF routing cost

Z. Liu et al.

http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0001
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0001
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0002
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0002
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0002
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0003
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0003
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0003
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0004
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0004
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0004
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0005
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0005
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0006
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0006
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0006
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0007
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0007
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0007
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0008
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0008
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0008
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0009
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0009
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0010
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0010
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0010
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0011
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0011
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0011
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0012
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0012
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0012
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0012
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0013
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0013
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0013
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0014
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0014
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0014
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0015
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0015
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0015
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0016
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0016
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0016
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0017
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0017
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0017
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0018
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0018
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0018
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0019
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0019
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0020
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0020
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0020
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0020
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0021
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0021
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0021
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0022
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0022
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0022
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0023
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0024
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0024
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0025
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0025
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0025
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0026
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0026
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0026
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0027
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0027
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0027
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0028
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0028
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0029
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0029
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0029
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0030
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0030
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0031
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0031
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0031
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0033
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0033
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0033
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0034
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0034
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0035
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0035
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0035
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0036
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0036
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0036
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0037
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0038
http://refhub.elsevier.com.libyc.nudt.edu.cn:80/S1389-1286(24)00250-0/sbref0038

Computer Networks 246 (2024) 110418

12

Zhiwei Liu is currently pursuing a master’s degree at Fujian
Agriculture and Forestry University, China. His research in-
terests include deep reinforcement learning, network functions
virtualization, and cloud computing. He is now conducting
research work on the scheduling of VNFs through deep rein-
forcement learning.

Zhaogang Shu is currently an Associate Professor at the College
of Computer and Information Science, Fujian Agriculture and
Forestry University, Fuzhou, China. He also is the director of
Department of Computer Science and Cloud Computing Lab,
Fujian Agriculture and Forestry University. He received B.S.
and M.S. degrees in computer science from Shantou University,
China in 2002 and 2005 respectively. He also received Ph.D.
degree from South China University of Technology, Guangz-
hou, China, in 2008. From Sept. 2008 to July 2012, he worked
as a senior engineer and project manager at Ruijie Network
Corporation, Fuzhou, China. From Oct. 2018 to Oct. 2019, he
worked as a visiting professor in MOSIAC lab at the Depart-
ment of Communications and Networking, Aalto University,

Finland. He directed more than 10 research projects and was the author of more than 30
papers and 5 patents. His research interests include software-defined network, network
function virtualization, 5G network and next generation network architecture, network
security, machine learning based network optimization, cloud computing and edge
computing. He serves as the reviewers of many famous journals on network and com-
munications, including IEEE Network, IEEE/ACM Transactions on Networking, IEEE
Transactions on Network Service and Management, ACM/Springer Mobile Networks,
Elsevier Computer networks and so on. He also is the member of CCF (China Computer
Federation) and Fujian Computer Society.

Shuwu Chen is currently a professor at the College of Computer
and Information Science, Fujian Agriculture and Forestry
University, Fuzhou, China. He also is the director of Innovation
Lab of IoT technology, Fujian Agriculture and Forestry Uni-
versity. He received bachelor’s degree in industrial automation
from Chang’an University, China, in 1998. And, he received
master’s degree in radio physics from Xiamen University,
China, in 2003. He is the Co founder of Xiamen Four-Faith
Communication Technology Co., Ltd., which focus on IoT
technology and solutions. He directed dozens research projects
and was the author of more than 10 patents. His research in-
terests include IoT technology, edge computing and AI
algorithm.

Yiwen Zhong received the M.S. and Ph.D. degrees in computer
science and technology from Zhejiang University, Hangzhou,
China, in 2002 and 2005, respectively. He is currently a Pro-
fessor with the College of Computer and Information Science,
Fujian Agriculture and Forestry University, Fuzhou, China. His
current research interests include computational intelligence,
data visualization, and bioinformatics.

Jiaxiang Lin received the Ph.D. degree in Communication and
Information System from Fuzhou University, China, in 2010.
He is currently an Associate Professor with the College of
Computer and Information Sciences, Fujian Agriculture and
Forestry University, Fuzhou, China. He has hosted four na-
tional, provincial and ministerial level research projects,
authored over 40 referred scientific papers and hold three
patents of invention. His research interests include spatial data
mining, artificial intelligence, and big data analysis.

Z. Liu et al.

	Low-latency Virtual Network function Scheduling Algorithm Based on Deep Reinforcement Learning
	1 Introduction
	2 Related Work
	3 Problem Description and Model
	3.1 Problem Description
	3.2 Mapping of Virtual Network Functions
	3.3 Processing Order of VNF
	3.4 Routing of Traffic

	4 Scheduling Model Based on DRL
	4.1 Related Background
	4.2 Problem Definition and Formulas

	5 Scheduling Algorithm Based On D3QN
	5.1 State Definition
	5.2 Action Definition
	5.3 Reward
	5.4 Node Selection and Routing Optimization
	5.5 D3QN Network Architecture and Training

	6 Simulation and Performance Analysis
	6.1 Parameter Settings
	6.2 The training process of D3QN
	6.3 Compared with Composite Rules
	6.4 Compared to Other Algorithms
	6.5 Comparison of node selection performance

	7 Conclusion
	Declaration of competing interest
	References

