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Abstract—Computer network traffic refers to the total
amount of data passing through the network in a certain period
of time, and is an important parameter to measure the load and
running status of the network. In the background of cloud service
and network slicing, predicting network traffic demand is
beneficial for network operators to adjust network resources and
meet user demand. However, the actual network traffic demand
is characterized by real-time and sudden, the traditional network
traffic prediction model has the problems of less prediction time
points and low prediction accuracy, and the prediction model
based on neural network has the problems such as gradient and
error accumulation. Therefore, improving the network
prediction model and avoiding the above problems are the focus
of the current research. In this study, based on the time series
theory of network traffic data, we propose a network traffic
prediction algorithm using a Self-Adaptive Attention Mechanism
(AAM). This algorithm dynamically adapts to process input data
in an adaptive manner, reducing computational complexity while
minimizing information loss. The Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) metrics are employed to
evaluate the prediction model's performance. Experimental
results indicate that compared to classical models like the Auto-
regressive Integrated Moving Average Model (ARIMA) and
Long Short-Term Memory networks (LSTM), AAM exhibits
higher accuracy and better predictive performance on datasets
with significant fluctuations. For instance, when predicting 6 time
points, AAM reduces RMSE by approximately 16.50% and
61.40% compared to ARIMA on two datasets, respectively. When
predicting 36 time points, the reduction is about 13.12% and
70.51%, and for the maximum of 144 time points, reductions are
approximately 51.77% and 73.40%.

Keywords-Network traffic prediction; Network slice; Time series;
Self-Adaptive attention mechanism

I. INTRODUCTION
With the development of 5G, edge computing, software-

defined network (SDN) [1], network function virtualization

(NVF) [2][3] and [4] technologies, SDN and NFV can use
virtualization technology to separate specific network functions
from dedicated devices to general hardware devices. At the
same time, the future network to achieve refined, automatic,
intelligent operation and peacekeeping management will
become a new challenge [5]. Network traffic prediction can
cope with these challenges, and accurately perceive
application-level network traffic such as edge network, wireless
network, and provide fine-grained traffic measurement.

Network traffic refers to the total traffic of the network link
per unit time. In the process of network traffic collection, a
fixed time interval is usually selected to obtain a definite time
series data [6].

When it comes to network traffic prediction, it is
challenging to address all issues with a single unified model.
Traditional models struggle to capture the characteristic
differences in network traffic, failing to reflect the complex
variations of non-stationary network traffic, which impacts the
design, training, and performance improvement of prediction
models. Currently, some deep learning prediction methods
have made significant progress in handling prediction problems.
However, they also have substantial limitations. Discovering
time dependencies from long-term time series may not be
reliable, as these dependencies might be masked by temporal
patterns. Additionally, determining parameters for some neural
network models can be difficult, leading to issues such as
gradient vanishing and exploding.

To address the aforementioned challenges, this paper
proposes a network traffic prediction model based on time
series theory, incorporating an adaptive attention mechanism.
The model takes time series data as input into an encoder and
decoder. Leveraging the adaptive attention mechanism, it
utilizes Q, K, V matrix operations to capture relationships
between data, ultimately yielding the prediction results.

The organization structure of this article is as follows: the
first section is the introduction, the second section introducesIndustry-University-Research Innovation Fund for Future Network
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the relevant work, the third section introduces the model and
algorithm, the fourth section introduces the data sets,
experimental results and measurement indicators. Finally,
Section 5 reaches the conclusions and the future prospects.

II. RELATED WORK

Currently, network traffic prediction models are primarily
classified into two categories: linear models and nonlinear
models [7]. T. Anderson introduced the Auto-Regressive
Integrated Moving Average algorithm [8]. Li Y utilized
discrete wavelet transform to decompose network traffic into
high-frequency and low-frequency components in a time series.
They then employed Prophet and Gaussian process regression
to predict the two components separately, adding them to
obtain the final prediction result [9]. Lazaris A, Prasanna V K,
and others utilized Long Short-Term Memory and improved
neural networks for prediction tasks[10] [11]. Xu F, Lin Y, and
collaborators proposed a network traffic prediction method
based on Simulated Annealing Arithmetic (SAA)-optimized
Auto-Regressive Integrated Moving Average model combined
with Back Propagation Neural Network [12]. This method
integrates the linear model ARIMA, the nonlinear model
BPNN, and the optimization algorithm SA to achieve accurate
prediction tasks. LAN X and Li Jiacheng used BP neural
networks [13], wavelet neural networks [14], and other neural
networks for network traffic prediction. Compared to shallow
neural networks, deep neural networks can extract high-
dimensional and abstract features from training samples.
TANG F, MAO B, and others proposed an intelligent traffic
control algorithm (ST-DeLTA) based on convolutional neural
networks, assisting deep learning for traffic prediction tasks by
handling network traffic with spatiotemporal characteristics
[15].Vinchoff C, Chung N, and colleagues used a nonlinear
GCN-GAN model to predict burst-traffic in optical networks,
employing graph convolutional generative adversarial networks
for optical network traffic prediction [16]. Lohrasbinasab I
introduced a statistical learning and machine learning (ML)-
based approach [17], expanding on existing network traffic
prediction techniques. Zhang L, Zhang H, and others proposed
an end-to-end online prediction model for network traffic [18],
consisting of wavelet transformation and LSTM components.
With the rise of attention mechanisms proposed by Vaswani A,
Shazeer N, Li M, Wang Y, and others introduced a wireless
network traffic prediction deep learning method based on
attention mechanisms [20]. Zeng A, Chen M, and others began
exploring time series-related problems [21].

However, short-term network traffic generally experiences
severe fluctuations. Most of the above researchers place it
within a suitable short time scale, extracting features between
data before making predictions. Linear models typically require
the manual setting of various parameters based on experience
to fit data and are suitable for short-term traffic prediction.
Nonlinear models like LSTM struggle to overcome gradient-
related issues, limiting their applicability. Recent applications
of the transformer, proposed by Vaswani, in computer vision,
natural language processing, and time series [19], as well as the
research on informer by Zhou H and others, offer new avenues
for network traffic prediction, especially in long sequence time-
series forecasting (LSTF) [22].

Differing from existing research, this paper, based on the
time series theory of network traffic data, utilizes traffic data
that directly reflects bandwidth resource demands. The
proposed network traffic prediction model employs an
Adaptive Attention Mechanism (AAM). The study compares
predictions made with ARIMA, LSTM, and AAM on two
datasets to provide a comprehensive analysis.

Unlike existing time series prediction models, this paper
makes the following main contributions: a) Introducing an
Adaptive Attention Mechanism algorithm to address network
traffic prediction, providing more accurate predictions at
multiple time points. b) Compared to traditional linear models
and nonlinear models in neural networks, the AAM model can
take into account 'long-standing' traffic features in network
traffic that existing methods may overlook. It achieves better
results in multi-target and multi-step prediction scenarios in
traffic prediction problems.

III. METHODS

A. Model introduction
The Adaptive Attention Mechanism (AAM) model aims to

address the challenge of long sequence prediction in network
traffic. It employs an adaptive approach to process input data,
analyzing relationships, effectively overcoming limitations of
traditional models. In particular, the Adaptive Attention
Mechanism differs significantly in methodology from classical
models like ARIMA and Recurrent Neural Networks, despite
being rooted in time series theory. Traditional models struggle
to adequately capture the differences in network traffic
characteristics, impacting the design, training, and performance
improvement of prediction models. Additionally, some neural
network models, such as LSTM, face challenges in determining
parameters and are prone to issues like gradient vanishing and
exploding. The (AAM) effectively addresses these issues.

Its structure is illustrated in Figure 1. Its key feature lies in
dynamically and adaptively selecting input data feature vectors
at each stage. It is characterized by dynamic adaptive selection
of the input data at each stage. Below is the input data sequence.
The data input part of the decoder should be filled with 0 to
prevent paying attention to the future part in advance, that is,
shading (Mask attention) operation, which is the form of the
adaptive attention mechanism to shading. The red dashed line
divides the entire model into an encoder and a decoder. The left
encoder operation is the calculation of multi-head adaptive
attention, the small blue trapezoid represents the distillation
operation, the purpose is to reduce the computational amount.
After the encoder, the data is processed by the fully connected
feature graph and input to the right decoder.

The right decoder calculates the results of the left encoder
and the masked data entered by the decoder. Then, through a
fully connected layer, the predicted output of the green grid
part is obtained. The selection of attention mechanism is a key
problem. The improper choice may cause information loss,
while the fixation of the down-sampling rate may lose
important information on the one hand, and may contain
redundant features on the other hand. Therefore, the method of
adaptive dynamic selection of attention matrix is adopted to
reduce the computational burden and reducing the information
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loss, so as to better achieve the prediction goal. Where,
adaptive attention specific operation first uses KL divergence
to measure similarity between and the matrix, ranked according
to scores. Then it adaptively selects a subset of the data to
reduce the network size. Finally, the generative decoder only
needs a fully connected layer in the inference stage to avoid
error accumulation in the inference process.

Figure 1. Schematic representation of the self-adaptive attention mechanism

The model of the adaptive attention mechanism shown in
Figure 1 consists of the left encoder and the right decoder.
Among them, the encoder consists of multiple coding layers,
which is a robust remote dependence to extract the input data
of long sequences.

The core of the encoder part is the computational adaptive
attention. First, the data goes through the initial position
encoding and time encoding, and the output obtained by the
encoder operation is used as the input to the partial attention
matrix Q of the decoder. The decoder is composed of multiple
decoding layers. The decoder data input adopts the mode of
"known + unknown", and a part of the known time series is
used to form the input part. The time series data to be predicted
is filled with “0” coverage to prevent the current position from
paying attention to future information and avoid auto-
regressive. Finally, the prediction results are obtained by fully
connected convolution. The following are the specific details of
each part of the model:

Encoder part: The encoder on the left side of the model
consists of N (N=6, 4, 2). Each layer has two sub-layers. One is
the multi-head adaptive attention mechanism, and the other is a
fully connected feed-forward network. The two sub-layers are
connected with residual differences for data normalization. To
facilitate the calculation, all the sub-layers and the embedded
layers in the model will produce the output with 512
dimensions.

Decoder part: Similar to the encoder, residual connections
are used in each sub-layer and normalized later. The input uses
the output of the encoder and the masked data sequence to
prevent the current position from paying attention to the
subsequent position.

Input data location coding: Input data embedding consists
of three independent parts: a scalar projection, local timestamp

(location) and global timestamp embedding (minutes, hours,
days, weeks, etc.). The model does not contain recursion, in
order for the model to utilize the order information of the
sequence, injecting information about the relative or absolute
position of the sequence as the sequence marker. Add
"positional coding" to the input data sequence embedding at the
bottom of the encoder and decoder stack. Location coding has
the same dimension d , and sums between the different
frequency sine and cosine functions, as shown in Equations (2)
and (3).

A one-dimensional convolutional filter was used to project
the scalar context t

i
f , represented by an input vector, as shown

in the formula (1), {1,2,3,..., }
f

i LÎ , is the factor of the
magnitude between the balanced scalar projection and the local
and global embedding. The sequence input is normalized and
set to 1, and the global timestamp is a learnable embedding
vector, as shown in equation (4), and the embedding schematic
is shown in Figure 2.

SE(L�× t−1 +i (1)

PE pos,2i+1 = sin (pos/100002i/model ) (2)

PE pos,2i+1 = cos (pos/100002i/model ) (3)

F����[�]
� = ���

� + PE(L�× t−1 +i + � (SE(L�× t−1 +i)�� (4)

Adaptive attention mechanism: The attention function [19]
in the original self-attention mechanism consists of the query
Q matrix, the key K matrix and the value V matrix finally
mapped to the output, in which the query, key value and output
are expressed by vectors. The output is counted as a weighted
sum of the values, where the weights assigned to each value are
calculated by the compatibility function of the query and the
corresponding keys. Adaptive attention model attention is "dot
product attention". The input consists of the dimension as the
query vectorq , the key vector k , and the value vectorv . The
query point product of all key values is calculated, dividing
each result by

k
d , and the function maxsoft is applied to

obtain value weights. Zhou H et al. [22] proposed the self-
attention mechanism as formula (5).

Attrention Q, K, V = softmax( ���

��
)V (5)

, , ,Q K V
L d L d L d

Q R K R V R L
´ represents the length

of the time-series data.

The adaptive attention mechanism mentioned in this paper,
different from Vaswani and Zhou H et al. [19][20], makes the
number of feature vectors of input data in each stage of the
network into dynamically adaptive, without discarding
important information to process redundant information
without wasting computing resources. In the adaptive attention
module, the score is calculated based on the KL divergence
metric q and k similarity, mainly following the formula (6).
As shown in Figure 3, multiple q vectors constitute the weight
matrix qW , and many k components form the weight
matrix kW .After calculation 1 1 1 2, ,...q k q k  , the scores

502

Authorized licensed use limited to: NANKAI UNIVERSITY. Downloaded on April 23,2024 at 00:51:03 UTC from IEEE Xplore.  Restrictions apply. 



are sorted, and a subset of data is automatically selected
according to the sorted scores. The specific selection process is
shown in Algorithm 1.

M ��,K = ln �=1
�� �

����
�

�� − 1
�� �=1

�� �
����

�

�� (6)

The i th q is defined as probability for all concernsk , is the

attention probability distribution. ( | )
1

j i

K

k qq
L

 is a uniform

distribution,
k
L is the query vector length. The first term in the

formula is the operation
i

q in the matrix K , and the second
term is the average of them.

Figure 2. Schematic representation of the input data embedding

Figure 3. A Schematic representation of the weight matrix

The adaptive attention mechanism selection process is
shown in Table I and can be expressed as Equation (7).

Attrention Q,K, V = softmax( ����

��
)V (7)

Where Q  are the adaptively sampled and a matrix of the
same sizeq .

Algorithm 1 introduces the selection process of the adaptive
attention mechanism, and sets the feed-forward network layer
(the size of the inner layer is 2048) and the dropout layer.
The data with 10% of retention is the validation set. Thus, all
experiments were performed under eight time-order random
training and validation, resulting in a mean of eight runs. All
data were normalized so that the variable mean was 0 and the
standard deviation was 1.

Algorithm 1. Adaptive attention selection process
Preconditions and inputs: , ,

m d n d n d
Q R K R V R ,

data set
1 Set the experimental hyper-parameters, along with a
constant sampling step size:length

2 randomly select K


from K

3 Set standard points: ( )TS Q K
 


4 calculate the q measured

values max( ) ( )M S mean S
 

  , ranking the
measurements M from small to large
5 Q  matrix was selected from Q , ranked according to
the q score of the fourth step , with length as the length
6 calculate Adaptive attention: shown in Equation (7)
7 outputs: Adaptive mechanism of attention

IV. RESULTS AND DISCUSSION

A. Experimental dataset
Data set 1 was obtained from the WIDE project, starting

from 2020 / 8 / 1 0:00 to 2022 / 8 / 31 23:50. Each data was
measured in 10 minutes, totaling 109585 data records. The data
format includes the amount of data from 6 IP ports and a total
flow data, while each record includes the date, start time and
end time, ID number and other labels. Data set 2 is from ISP
Internet data, which is the UK Academic Network
(https://github.com/rankinjl/internet) backbone traffic, starting
from 2005 / 6 / 7 07:00 to 2005 / 7 / 28 13:55. Data is collected
every five minutes, and the data is kept in two decimal places
after processing. The dataset tracks each IP port and its total
traffic consumption for a month. The data format of part of the
data set is shown in Table II.

TABLE I. Data set 1 Basic format of traffic data

Data IP1 IP2 IP3 IP4 IP5 IP6
Total(GB)

2020/8/1 0:00 6.12 6.39 2.31 3.87 1.39 2.76 22.85

2020/8/1 0:10 4.61 1.91 2.92 3.14 1.74 2.57 16.90

2020/8/1 0:20 3.72 1.68 1.96 6.40 2.13 1.28 17.16

2020/8/1 0:30 5.89 1.49 5.51 1.52 1.87 3.64 19.92

2020/8/1 0:40 4.50 2.28 4.90 3.56 1.95 3.81 21.01

2020/8/1 0:50 4.64 4.21 1.93 13.30 2.31 2.76 29.13

B. Data handling
In the basic time series model, the network traffic

prediction problem essentially is the time series problem.
Bandwidth resource size affects the amount of bytes
transmitted by a network slice over time. Therefore, network
traffic prediction is defined as a multi-step and multi-target
byte prediction problem.

The network traffic prediction results reflect the bandwidth
resource requirements to some extent. The traffic time series
data of the network data over a period of time can be defined as
formula (8).
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x�
� = {��

0, ��
1, …, ��

�} (8)

Where t

i
X represents the amount of bytes through which

the slice i passes in the time slot [ , ]t t  and, in the
prediction task,  is the time interval. According to the time
series data definition, the prediction task is to predict individual
network traffic data based on its history of time series data,
which n represents the first n step.

C. Evaluating indicator
To evaluate the model performance, the mean absolute

error (MAE) and the root mean square error (RMSE) indicators
were used. The smaller values of MAE and RMSE indicate a
better prediction. These two indicators are defined as shown in
Equations (9) and (10).

MAE = 1
� �=1

� |��'� − ��| (9)

RMSE = 1
� �=1

� (|��'� − ��|)2 (10)

i
y is the true value, '

i
y is the predicted value.

D. Experimental result
The AAM method is compared with the traditional time

series prediction method ARIMA and the deep learning LSTM
algorithm. Data set 1 use length starts from 0:00 on August 1,
2020 to 0:0:00 on October 10, 2020, with 70% for training data,
10% for validation data, and the rest as test set. The purpose is
to predict the results for 6, 36, 72, 144 time points, with the test
time point starting at 02:30 on 26 September 2020. The length
used in data set 2 started from 7:00 on June 7, 2005 to 13:45 on
July 28, 2005, and the test time point started from 14:20 on
July 20, 2005.

The network traffic prediction results reflect the bandwidth
resource requirements to some extent. The traffic time series
data of the network data over a period of time can be defined as
formula (8). TABLE III and IV show 6, 36, 72, 144 points, for
ARIMM, LSTM and AAM models, respectively. It is difficult
to predict user traffic in a short period of time. Compared with
the ARIMA model and the LSTM model, the results at 10 min
and 5min timescales show that the adaptive attention
mechanism model MAPE and RMSE are lower. At the same
time, when the data set predicts 144 points, MAE and RMSE
are actually lower and more accurate than predicting 72 time
points. At the 72 points predicted on dataset 2, MAE and
RMSE are instead lower and more accurate than predicting the
36 time points. This shows that the proposed AAM model can
take into account older data information.

TABLE II. Data set 1 Experimental results

6 3.45 4.12 3.08 3.84 2.90 3.44

36 3.88 4.65 2.92 3.14 3.42 4.04

72 5.93 7.81 5.89 7.19 4.87 6.10

144 8.27 10.13 5.92 7.57 3.78 4.89

TABLE III. Data set 2 Experimental results

6 0.54 0.57 0.37 0.39 0.20 0.22

36 0.76 0.78 0.38 0.41 0.20 0.23

72 0.78 0.81 0.39 0.42 0.18 0.21

144 0.82 0.94 0.42 0.48 0.2 0.25

As shown in Figure 4, is the resulting graph of 144 time
points predicted by the AAM method on Dataset 1, and Figure
7 shows the predicted results on Dataset 2. As shown in Figure
5, the LSTM method predicts 144 time points on Dataset 1, and
Figure 8 shows the LSTM method predicts the results on
Dataset 2. As shown in Figure 6, the ARIMA method predicts
the 144 time point results on Dataset 1, and Figure 9 predicts
the results on Dataset 2. By comparing the results of the two
models on the two data sets, it can be seen that the AAM model
has a good prediction effect, the LSTM model has reduced
performance due to error back-propagation, and the ARIMA
model has the worst effect, which is not suitable for the long
sequence prediction task.

Figure 4. AAM in the data set 1 prediction outcome

Figure 5. LSTM in the data set 1 prediction outcome

Forecast points
Method

Forecast points
Method

ARIMA LSTM AAM
MAE RMSE MAE RMSE MAE RMSE

ARIMA LSTM AAM
MAE RMSE MAE RMSE MAE RMSE
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Figure 6. ARIMA in the data set 1 prediction outcome

Figure 7. AAM in the data set 2 prediction outcome

Figure 8. LSTM in the data set 2 prediction outcome

Figure 9. ARIMA in the data set 2 prediction outcome

V. CONCLUSIONS
In this paper, we analyze network traffic data based on time

series theory and compare the performance of existing network
traffic prediction models. In addition, a new flow prediction
model of the adaptive attention mechanism is proposed.
Different from the previous deep learning models such as
LSTM, the adaptive attention mechanism replaces the loop
layer commonly used in the codec structure, which improves
the prediction accuracy. In the future, model prediction
performance at different time scales and at different time
resolutions will be investigated, while comparing the
universality of models in different data contexts.
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