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Abstract In recent years, Software-Defined Networking
(SDN) has been a focus of research. As a promising network
architecture, SDN will possibly replace traditional network-
ing, as it brings promising opportunities for network manage-
ment in terms of simplicity, programmability, and elasticity.
While many efforts are currently being made to standardize
this emerging paradigm, careful attention needs to be also paid
to security at this early design stage. This paper focuses on the
security aspects of SDN. We begin by discussing characteris-
tics and standards of SDN. On the basis of these, we discuss
the security features as a whole and then analyze the security
threats and countermeasures in detail from three aspects,
based on which part of the SDN paradigm they target, i.e.,
the data forwarding layer, the control layer and the application

layer. Countermeasure techniques that could be used to pre-
vent, mitigate, or recover from some of such attacks are also
described, while the threats encountered when developing
these defensive mechanisms are highlighted.
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Security countermeasures

1 Introduction

With the advent of the era of clouds [1], cloud service providers
need to satisfy various network service requirements (such as
bandwidth, service quality, safety or reliability) for different
users, which requires that the network architecture has high elas-
ticity and flexibility, and that the network resources can be allo-
cated flexibly by way of network function virtualization. How-
ever, in traditional network architectures, commonly used closed
network equipment (such as routers or switches) have the fol-
lowing drawbacks: a) software and hardware are tightly coupled;
b) Network protocols that are too complicated are integrated into
the devices; c) Almost all devices are manufacturer-proprietary,
whichmeans it is difficult to change their functionality or update
them. With the ever increasing network scales, the above char-
acteristics make traditional networks increasingly cumbersome,
leading to a situation where cloud service providers cannot cus-
tomize and optimize network resources effectively according to
specific user requirements [2, 3].

The Software Defined Network (SDN) [4] refers to a novel
and revolutionary network architecture, which can currently
be considered as a best practice for network function
virtualization. The basic idea is to strip the complex control
logic out from all the network nodes, and form a logical con-
trol center to guide the packet forwarding; this change would
achieve the goal of controlling all network traffic freely by
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software programming without changing existing network to-
pology. As one of the most promising technologies, SDN has
incomparable advantages over traditional network architec-
tures: a) The decoupling of forwarding and control allows
application innovation and equipment upgrades to be indepen-
dent from each other, which would accelerate the develop-
ment and deployment of new network applications; b) SDN
simplifies the network management model, which allows op-
erators to manage the network conveniently; c) The central-
ized control logic has a global view of the network, which can
provide enough information for the operator to optimize net-
work utilities or improve network performance. Therefore,
SDN makes up for the defects of traditional networks, and
can meet multi-tenant network requirements in a cloud envi-
ronment more effectively.

Currently, OpenFlow [5] is the de facto standard of SDN, it
was proposed by the research team Cleanslate of Stanford Uni-
versity. The widespread acceptance of OpenFlow by academia
and industry makes this SDN standard very successful [6]. In
industry, many commercially-oriented SDN-enabled networks
have been deployed, such as Microsoft’s datacenter network
[7] and Google’s backbone network [8, 9]. What’s more, a lot
of SDN-enabled network virtualization software has been sig-
nificantly developed, such as VMWare NSX [10] and Nuage
Networks’ VSP [11]. In academia, the top international confer-
ence, SIGCOMM, has established a special workshop named
hotSDN since August 2012, which calls for papers that report
the latest research achievements on SDN. In addition, many
well-known universities, such as Stanford and Princeton, have
also sprung up research projects related to OpenFlow/SDN,
which involves controller design, forwarding performance,
routing decisions’ optimization, network virtualization applica-
tions, programmable wireless networks, energy saving in
datacenter networks, etc.

Except for the research topics mentioned above, there is
also a research direction that has not attracted much attention,
which is the security of SDN [12, 13]. If the security of SDN
cannot be ensured, their development will encounter a lot of
resistance during the process of replacing traditional network
architecture, and even become altogether irrelevant. In the past
few years, in order to address security threats of SDN, related
working organizations have been founded to study the corre-
sponding security challenges and solutions [14]. At the same
time, some solutions against SDN security threats have been
proposed, which include controller replication schemes, au-
thentication and authorization mechanisms, schemes to pro-
tect controllers against Denial of Service or Distributed Denial
of Service (DoS/DDoS) attacks, traffic monitoring and analy-
sis, flow-table overflow attack protection, and others [15].

In this article, we analyze SDN from a security perspective
with the objective of shedding light on the new security capa-
bilities and the new security threats that accompany this new
architecture. Furthermore, we also survey countermeasures

against these threats, through which SDN security can be en-
hanced. The main contributions of this paper include: a) A
comparison of advantages and disadvantages of SDN as op-
posed to traditional networks regarding security issues from
the perspective of overall architecture. b) A dissection of the
security threats of SDN from the perspective of different func-
tion layers and attack types in detail, and pointing out possible
security countermeasures.

The rest of paper is organized as follows: Section II presents
an overview of SDN architecture. Section III analyzes security
issues of SDN. Section IV discusses SDN security threats and
corresponding countermeasures in detail. Section V concludes
the paper and points out future research directions.

2 Overview of SDN architecture

SDN is a kind of emerging network architecture which decou-
ples data forwarding from the control logic; currently, these
aspects are tightly integrated in traditional network equipment,
such as switches and routers. The decoupling of data
forwarding and the control logic enables the network control
and applications to be programmable [16]. Generally, SDN
architecture can be divided into three layers, respectively
called the data forwarding layer, the control layer and the
application layer from bottom to up, as illustrated in Fig. 1.

2.1 Data forwarding layer

The data forwarding layer consists of many SDN switches,
which are physically connected by wired or wireless media.
Each switch is a simple device in charge of forwarding net-
work packets and has a forwarding table, named the Flow
Table, which contains thousands of rules that are used to for-
mulate forwarding decisions.

Each rule item in the Flow Table is made up of three fields:
the action, the counter and a pattern. The pattern field defines the
flow pattern, which is basically the set of header field values of
the packet. When data packets are received, the switch will
search its Flow Table to find a rule that matches the fields.

Once the switch finds such a rule, the counter of the rule
increases, and the action corresponding to the particular rule
will be performed. Otherwise, the switch will notify the con-
troller to request for help or simply discard the packet. It is
worth noting that forwarding rule items are not generated by
the switch node itself, but are pushed down by the controller
from the control layer.

2.2 Control layer

As the SDN’s brain, the control layer manages and controls
the entire network. We refer to the network node that imple-
ments these functionalities as the SDN controller, and it is
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generally deployed as a separate physical device with specific
software. The SDN controller communicates with the switch
through a standard south-bound API, e.g., OpenFlow, and has
a global view of the entire network topology at the data
forwarding layer, i.e., switches and links. Various routing pro-
tocols, such as BGP and OSPF, run on the SDN controller so
that all the data forwarding taking place in the data layer is
based on instructions placed by the controller.

As the de facto standard of SDN, OpenFlow was initially
designed with a single controller for simplicity, which consti-
tutes however a potential single point of failure. Therefore,
almost all recent SDN architecture implementations, such as
Floodlight [17], NOX [18] and OpenDaylight [19], support
multiple distributed controllers, which improves the scalabil-
ity and availability of network resources. In the multi-
controller architecture, each individual controller is responsi-
ble for controlling only a portion of the switches. In order to
maintain the consistency of the network’s status and work
collaboratively, an individual SDN controller can communi-
cate with other controllers in the network through east–west-
bound APIs, as discussed in [20].

2.3 Application layer

The application layer allows network operators to respond
rapidly to the various business requirements. Innovative ap-
plication software has been built to function on top of SDN
controllers so that various application requirements are met

[21], such as network virtualization [22], topology discovery
[23], traffic monitoring [24], security enhancement [25], load
balancing [26], and others.

The application layer communicates with the control
layer through north-bound APIs, such as the REST API.
The control layer provides an abstraction of the network’s
physical resources for the application layer, which means
that network operators can change the data paths of packets
using only software programming centrally on the SDN
controllers, and not configure all the physical switches in
the data path one by one.

3 Security analysis of SDN architecture

Now, we will look into the SDN architecture’s characteristics’
impact on security. Compared to traditional network architec-
tures, security threats of SDN will be even more concentrated,
as opposed to the dispersion seen in the network elements of
traditional networks. Therefore, because of its design nature,
SDN has security advantages and security defects. Its advan-
tages include:

a) Effective monitoring of abnormal traffic. Due to the fact
that the SDN controller can perceive the entire network
traffic simultaneously, it is easier to notice abnormal be-
havior in network traffic caused by an attacker.

Application layer
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Data forwarding layer

South-bound API
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North-bound API 

e.g. REST)

Load 

balancing

Topology
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Traffic 
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Fig. 1 The architecture of SDN
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b) Timely dealing with vulnerabilities. Another important
advantage can be attributed to the nature of the program-
mable network environment. Once a new threat has been
detected, operators can program new software to analyze
and deal with the vulnerability immediately, without
spending time to wait for an update of the operating sys-
tem or application software integrated in the
manufacturer-proprietary devices. In addition, the SDN
controller can achieve a security policy configuration
covering 2–7 layers of the Open Systems Interconnection
(OSI) architecture, and provide more granular security
control.

On the other hand, the natural security defects of SDN
include:

a) Vulnerable controller. Most functions, such as network
information collection, network configuration, and
routing calculation, are concentrated in the SDN control-
ler. The architecture of SDN provides a more concentrated
target for, and greatly reduces the difficulty of such at-
tacks. At the same time, the development of cloud com-
puting provides the attacker with very large-scale comput-
ing abilities; with the support of cloud computing plat-
forms, attackers can easily implement attacks. If the at-
tackers successfully seize the controller of an SDN, they
can cause massive paralysis in network services and affect
the whole network covered by the controller.

b) Risks caused by open programmable interfaces. Due to
their open nature, SDN are more susceptible to security
threats. First, it makes the software vulnerabilities of the
SDN controller fully exposed to attackers, as the latter
will have enough information to formulate an attack strat-
egy. Second, the SDN controller provides a large number
of programmable interfaces for the application layer and
this level of openness may lead to an abuse of the inter-
face, such as embedding malicious code, such as a virus.
Therefore, the open interfaces of SDN controllers need to
be carefully evaluated and scrutinized.

c) More attack points. As the SDN is divided into three
layers, the entities of each layer may be spread across
different locations of the network; communication be-
tween these entities will be necessary and frequent.
Hence, compared to traditional networks, SDN provide
more possible attack points for attackers, as shown in
Fig. 2. In the figure, we point out six possible attack points
in the SDN architecture using red stars, and we will de-
scribe them in the order labeling shown.

& The SDN switch. A SDN switch is generally a sepa-
rate device composed of related hardware and soft-
ware, which vulnerable to attacks. An example vul-
nerability is the size limitation of Flow Tables.

& The links between SDN switches. Almost data packets
transmitted between SDN switches are not encrypted,
and may contain users’ sensitive information. These
packets can be intercepted by attackers easily, espe-
cially when the links between switches are wireless
media.

& The SDN Controller. As stated previously, the con-
troller is the most attractive target for attackers. Due
to the openness of programmability and complexity
of its functionality, the controller’s software is inevi-
tably vulnerable, and this can be exploited for mali-
cious attacks.

& The links between the controller and the switches. All
forwarding rules are inserted into switches by the con-
troller. The data packets that contain these rules can be
tampered with by attacker through eavesdropping on
the link between the controller and switch, which will
result in a spurious rule insertion or malicious rule
modification. Once fraudulent rules are installed in
the switch, the data packets will not be forwarded
correctly.

& The links between controllers. In a multi-controller
environment, the communication between different
controllers is necessary for retaining the consistent
state of the whole network. The data packets in the
links between controllers can be intercepted, which
could provide possible clues to attackers for
compromising the controllers.

& The application software. The application software is
built on the controller directly and is generally located
on the same physical device with controller. When the
application software invokes the functions of the con-
trollers through the north-bound APIs, malicious code
maybe embedded into the controller. Hence, the ap-
plication software is considered the most convenient
attack point for seizing the controllers.

4 Security threats to SDN and corresponding
countermeasures

With the advancement of research into SDN, the security is-
sues of SDN attract more and more attention from manufac-
turers and operators. In this section, we will describe in detail
the main security threats and countermeasures that have been
presented. According to the above-presented SDN architec-
ture and related security analysis, we divide the threats and
corresponding countermeasures into three categories based on
which layer of the SDN architecture contains the
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corresponding attack target, i.e., the forwarding layer, the con-
trol layer and the application layer.

4.1 Threats to the data forwarding layer
and countermeasures

The data forwarding layer is located at the bottom of the SDN
architecture, and contains thousands of switches that are inter-
connected with each other. These switches are responsible for
forwarding packets. If a switch is compromised, the packets
that flow through it will not be forwarded correctly. In addi-
tion, switches are the direct entry point of network access for
end users, and attackers can attack a switch by simply
attaching a link to a port of the switch. Therefore, it is very
important to recognize security threats and find corresponding
countermeasures for SDN switches. We consider the architec-
ture and working principles of SDN switches adhering to the
OpenFlow specification, as shown in Fig. 3.

An OpenFlow switch generally contains three function
modules, namely the OpenFlow client, the Flow Table and
the Flow Buffer. When the switch receives a packet from an
input port, it will place this packet in the Flow Buffer, and
search the Flow Table to try to find a rule that matches the
message fields of this packet, such as a MAC/IP address and a
TCP/UDP port. If an appropriate rule is found, the packet will
be removed from the Flow Buffer and be forwarded to an
output port. Otherwise, the switch will send a Packet_In mes-
sage through the OpenFlow client to the controller to request
instructions. After receiving the new message, the controller
would make a routing calculation and insert a new rule into the
Flow Table. According to the above process, we can identify
three main security threats; they are a man-in-the-middle

attack between the switch and the controller, which targets
to tamper with rules, a DoS attack to overflow the Flow Table,
and a DoS attack to overflow the Flow Buffer.

4.1.1 Man-in-middle attack between switch and controller

(1) Threat description
A man-in-the-middle attack is a classic network intru-

sion method, the main principle of which is to insert an
agent node between the source and the destination node,
and is used to intercept communication data and tamper
with them without being detected by either communicat-
ing sides. Specific attack methods of man-in-the-middle
attacks include session hijacking, DNS spoofing, port
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mirroring, and so on. A man-in-the-middle attack be-
tween the controller and switches is an ideal choice for
attacking an SDN, as it can be used to intercept and
tamper with the forwarding rules issued to the switch in
order to gain control of network packet forwarding. After
this has been achieved, further attacks can be implement-
ed by attackers, such as black-hole attacks. In addition,
we know that the controller and the switches maybe not
be directly connected physically, i.e., a packet from a
switch to the controller may travel throughmultiple other
switches. Therefore, all switches and the hosts connected
to them directly on the communication path are suscep-
tible to be converted to agent nodes in a man-in-the-
middle attack.

(2) Countermeasures
In order to guard against man-in-the-middle attack,

much research work has been done both in academia
and in the industry. The most obvious approach is to
create a secure channel between the controller and
switches. In OpenFlow specification v1.0, Transport
Layer Security (TLS) [27] was used to secure the
controller-switch communication. However, the config-
uration of TLS is very complex, and many vendors do
not provide support of TLS in their OpenFlow switches.
Thus, later versions of the OpenFlow specification de-
clare that the configuration of TLS is optional. Moreover,
TLS cannot provide any TCP-level protection, which
means that the network is susceptible to TCP-level at-
tacks. Since TLS is not enforced, our main security chal-
lenge in this case is to distinguish between normal and
forged flow rules, and to eliminate forged rules before
they cause ill effects [28].

Some alternative countermeasures have been present-
ed to this threat. FlowChecker [29] is a configuration
validation tool able to recognize internal configuration
errors of switches effectively. Specifically, it first creates
models of all the interconnected switches, and then exe-
cutes end-to-end rapid analysis and verification for all
switch configurations through a binary decision diagram
and mode l check ing techno logy, by which
misconfigurations can be detected. As a software exten-
sion module of the NOX controller, FortNOX [30] pro-
vides a role-based authorization and authentication secu-
rity enhancement strategy. Through its novel analysis
algorithm, it can detect collisions of various forwarding
rules. The algorithm has good robustness and performs
its functions correctly even in cases of malicious appli-
cations’ attack. At the same time, before the applications
modify the forwarding rules, FortNOX will verify the
legitimacy of the modifications through digital signa-
tures or security constraints. VeriFlow [31] acts as a mid-
dle layer between a controller and the switches, and is
mainly responsible for the dynamic verification of

network variables within the scope of the entire network,
especially when a new forwarding rule is inserted. Ex-
periments based on the Mininet, an OpenFlow simula-
tion environment, have been conducted and results show
that, by tracking routing data, VeriFlow can finish the
detection of a new forwarding rule within a few hundred
milliseconds, which is very effective.

Due to the fact that controller connectivity is very
important for the proper operation of switches, redundant
links or fast link recovery mechanisms are helpful to
mitigate the effects of man-in-the-middle attacks be-
tween the controller and the switches. The OpenFlow
protocol itself has connection stability testing mecha-
nisms, whereby each switch sends activity preserving
messages to the controller periodically. If the master con-
troller fails to respond, it can automatically instruct the
switch to connect to a backup controller. Controller rep-
lication is similar to the mechanism that proposed in [32].
That is to say, if the switch does not receive the response
from the controller during a certain period of time, the
switch thinks that the controller has failed, and it will
quickly establish a connection with another controller,
allowing the network to work continuously.

4.1.2 DoS attack to saturate the flow table and flow buffer

(1) Threat description
The reactive rule design of OpenFlow renders the

switch vulnerable to Denial of Service (DoS) attacks.
Since packets with an unknown destination address will
cause a new rule to be inserted in the switch, an attacker
can generate large amounts of packets destined to un-
known network hosts in a short time, thus quickly filling
up a switch’s limited Flow Table storage capacity. When
the Flow Table is saturated by irregular traffic, legal traf-
fic will not be forwarded correctly, as there will be no
more available capacity for inserting new rules.

Except for the Flow Table, another target of DoS at-
tacks is the Flow Buffer. As described above, before
packets are forwarded out, they are buffered in the Flow
Buffer waiting for the results of the rule search or the
insertion of a new rule. Packets in the Flow Buffer will
be marked for deletion on a First In First Out (FIFO)
basis to release the storage space. As in the case of the
Flow Table, the storage capacity of the Flow Buffer is
also limited. Attackers can flood large packets belonging
to a different flow than that encountered by the switch
normally; the switch has to buffer these large packets and
this leads to the saturation of the Flow Buffer. When
legitimate packets are received, the Flow Buffer will
not have enough space to store these packages, and these
new packets will have to be dropped.
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(2) Countermeasures
We will discuss some examples of related counter-

measures that can alleviate this kind of attack. FlowVisor
[33] can enable network operators to differentiate net-
work packets according to the header fields of packets.
FlowVisor acts as an agent between switches and the
controller; it accepts rules from controllers and re-
writes them so the resulting rules only affect the portion
of the network that a given controller is allowed to con-
trol. For example, a controller may be allocated the net-
work segment comprised of all traffic to and from an
organization’s web servers. This controller might then
create a rule to drop all UDP traffic in response to a
DoS attack. When FlowVisor receives this rule, it will
rewrite it to drop all UDP traffic to and from the web
servers, leaving the rest of the network unaffected.

Virtual source Address Validation Edge (VAVE) [34] is
a preemptive protection scheme with OpenFlow/NOX ar-
chitecture aiming to mitigate DoS attacks caused through
IP spoofing. A new packet that does not match any rule in
the Flow Table will be sent to the controller for source
address validation, during which IP spoofing may be de-
tected, in which case the controller creates a rule in the
FlowTable to stop the specific flow from that source ad-
dress. Moreover, address validation in VAVE is very flex-
ible, while the packet process overhead and the required
resources are greatly reduced compared to other related
works. R. Braga et al. proposed a kind of lightweight de-
fense method against DDoS attack [35], which is based on
the characteristics of the traffic flow. This method shows
good performance in the analysis of attack detection.

The use of intrusion detection systems could help rec-
ognize abnormal traffic flows caused by DoS attack. Such
systems could be integrated with related mechanisms for
dynamic access control of the switches’ behavior, such as
rate bounds for control layer requests. Resonance [36] is
such a system that can strengthen dynamic access control
policy of the controller. The system issues dynamic secu-
rity policies directly to the forwarding data layer in the
SDN architecture based on real-time warnings and packet
flow level information.

4.2 Threats to the control layer and countermeasures

In the SDN architecture, the control layer, i.e., the OpenFlow
controllers, and its security have a direct impact on the data
forwarding layer [37]. If a controller is compromised, the
whole network, including a potentially large number of
switches, may be affected. This is because if a switch cannot
receive forwarding rules from the controller, it will not know
how to forward packets. Hence, due to its important role, the
controller may become a key target for attackers. The main

security threats to and countermeasures of the control layer are
described below.

4.2.1 DoS/DDoS attacks on the controller

(1) Threat description
DoS/DDoS attacks attempt to make controller func-

tions unavailable to legitimate users by exhausting com-
puting or memory resources, as shown in Fig. 4.

An attacker could produce enormous flooding traffic
in a short time to an SDN-enabled network using their
own host or controlling other distributed zombie hosts.
This traffic will be mixed together with normal traffic,
and it will be difficult to distinguish between the two
types. According to the OpenFlow specification, if a
switch does not know how to handle a new packet, it will
first store this packet in its Flow Buffer and then send a
Packet_In message to the controller to request for in-
structions. Therefore, in the case of a DoS attack, the
controller will have to deal with an enormous amount
of Packet_In messages generated by the flooding traffic
in a short time, which may lead to an exhaustion of re-
sources for processing normal traffic. At the same time,
the bandwidth between the controller and the switches
may be fully occupied by the attacking traffic and this
will seriously reduce the performance of the whole
network.

(2) Countermeasures
In order to alleviate the threats of DoS / DDoS on the

controller, we can analyze the characteristics of traffic
flows stored in the OpenFlow switches to detect this kind
of attack. FloodGuard [38] is a SDN-oriented light-
weight security framework, which is protocol indepen-
dent. FloodGuard contains two software modules, the
Active Flow Analyzer and Packet Migration, respective-
ly. In order to guarantee the security of a SDN, the Active
FlowAnalyzer conducts a dynamic analysis based on the
real-time running logic of controller, so that it can detect
traffic flows caused by DoS attacks. Packet Migration is
responsible for buffering the received packets and sub-
mitting them to the controller for processing at a limited
rate through a rotation scheduling algorithm, which pre-
vents the controller from consuming too much comput-
ing resources. When the DoS attack is discovered, the
Packet Migration module will redirect a table-miss mes-
sage to the data forwarding layer. At the same time, the
Active Flow Analyzer will monitor the current network
flow to determine a variety of sensitive parameters or
variables, by which the controller can generate forward
flow rules and install them to the switch proactively.

A DDoS is a more potent DoS attack, and its principle
is that the attacker can hijack a large number of compro-
mised hosts and control them to produce large-scale
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distributed attack traffic simultaneously to attack a target,
such as the controller. In order to cope with DDoS at-
tacks, researchers [39] proposed a DDoS Blocking Ap-
plication (DBA). The DBA runs on the controller, and
distinguishes between normal traffic and attack traffic
through a Locator/ID Separation Protocol (LISP) [40].
When the position of a network node changes, the
DBAwill notify the corresponding change to the control-
ler by locator, which is the clue to discovering the attack.
In addition, if the transmission rate of the traffic exceeds
a certain value, the controller will consider it as attack
traffic and drop these packets directly.

A Content-Oriented Networking Architecture
(CONA) [41] is a proxy node located between the client
and the content server, and can communicate with the
controller. Content request messages from clients are
intercepted, analyzed and filtered by CONA, in order to
mitigate the harm of DDoS attacks. When the rate of
request messages arriving at the content server exceeds
a certain value, a DDoS attack is considered to be in
progress. The controller will send a message to each
relevant CONA agent in order to avoid spreading the
attacking traffic and normal messages will be redirected
to a new server address.

From the above, we can see that the features of SDN
are suitable for defending against DoS attacks, and future
solutions for DoS protection may be developed on the
application layer of SDN architecture.

4.2.2 Threats on distributed multi-controllers

(1) Threat description
In order to alleviate the risk of having a single point

failure in the controller, SDNwere originally designed as
a single controller architecture, which lacks scalability

and reliability. Therefore, the solution of distributed con-
trol (controller clusters) has been proposed [42], in which
each individual controller instance functions as the mas-
ter of some switches and different controllers can com-
municate with each other to collaboratively manage the
whole network. However, multiple physical controllers
managing the network instead of a single one should be
transparent to the data forwarding layer, which means
that the controllers need to appear as a single controller
for the entire network. In this situation, an application
that spans multiple network control domains will need
to deal with several security problems, such as authenti-
cation, authorization, and privacy issues during network
information transmission. In addition, with the distribut-
ed collaboration of multiple controllers, the dynamic
switch-over of the master controller and the coexistence
of multiple controllers in a single network domain can
cause configuration conflicts [43]. Therefore, in the
multi-controller architecture, an inconsistent configura-
tion is also a hidden security threat.

(2) Countermeasures
DISCO [44] provides control layer functions for dis-

tributed heterogeneous networks, and is implemented
based on Floodlight [45] with a special protocol, the
Advanced Messaging Queuing Protocol [46]. DISCO
consists of two modules, an inter-domain control module
and an intra-domain control module. The inter-domain
control module is responsible for monitoring and man-
aging the priority of data travelling between the domains,
so that flow paths with different priorities can be calcu-
lated and forwarded. Therefore, the inter-domain control
module can dynamically redirect or stop traffic flow to
deal with attacks. The intra-domain control module is
responsible for managing the communication between
controllers, and includes a message transceiver as well
as a number of agents. The message transceiver is

Controller (exhaus	ng resources)

Legi	mate usersA�acker

Packet_In messages 
(flooding traffic)

Wai	ng for processing
(normal traffic)

Fig. 4 DoS / DDoS attack on
controller
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designed to find neighboring controllers and to provide a
control channel regulating the communication between
controllers. Agents can exchange the entire network’s
information using the communication channel provided
by the message transceiver module. We can see that the
DICSO can effectively deal with security threats faced
by distributed controllers.

McNettle [47] is a scalable SDN controller supporting
multi-core CPUs, which demonstrates strong extensibil-
ity features due to the fact that it allows the addition of all
kinds of control algorithms. An operator can also extend
McNettle to make it become an advanced programming
language for managing the behavior of traffic flow, such
as monitoring state changes of each network node and
obtaining a global view of the entire network’s data flow
that can be used to deal with all kinds of malicious at-
tacks effectively. In addition, compared with the NOX
controller, McNettle has better performance.

HyperFlow [48] is a scalable event-driven distributed
controller platform, in which multiple controllers can
operate simultaneously and each controller has the abil-
ity to make forwarding decisions locally. In this way,
HyperFlow can greatly reduce the time of generating
and installing new flow rules, which will improve the
performance of the entire control layer.

Load balancing technology [49] can also be used to
improve scalability and provide the ability to deal
with security threats for SDN controllers. In addition,
the total number of controllers and their logical place-
ment will also affect the safety of the controller and its
scalability [50].

In [51], the placement of dynamic controllers is
discussed and a framework for the dynamic deploy-
ment of multiple controllers is proposed. In this
framework, the quantity and location of the control-
lers can be adjusted dynamically according to the net-
work’s parameters. The authors of [52] presents a con-
troller optimization framework, which suggests that a
single controller should at least meet certain delay
requirements, including the communication delay
from controller to the switch and between the control-
lers, so as to effectively deal with related attacks.

4.2.3 Threats from applications

(1) Threat description
Since higher-layer applications can obtain network

information only by invoking the API provided by the
controller, the latter not only needs to ensure the unin-
hibited access of legitimate applications, but also prevent
malicious or incorrect applications from causing security
threats. Applications running on the controller will pose

serious security threats to the controller itself. Different
applications have different functional requirements,
which result in a need to customize a different security
policy for each of them. For example, load balancing
applications may need to have access to network packet
statistics, and intrusion detection applications (IDS) may
need to check the header field of packets. Such custom
security policies based on different application require-
ments have not been designed yet.

(2) Countermeasures
Generally, in order to deal with security threats from

higher-level applications, related solutions include ac-
cess authentication of the application, isolation of the
resources available to the application, auditing and track-
ing. The Security-enhanced Floodlight controller (SE-
Floodlight) [53], which is based on the original Flood-
light controller, features additional security measures; for
example, it provides an audit subsystem that tracks all
security events so as to detect attacks effectively. SE-
Floodlight provides a programmable north-bound API
to manage the permissions of applications, which func-
tions as a mediator between applications and controller.
SE-Floodlight not only contains an application authenti-
cation module that used to verify the integrity of the
software modules, but also provides a role-based func-
tion authorization module, which can assign different
privileges according to the different roles of the applica-
tions. FRESCO [54] is a security development frame-
work for OpenFlow applications, which is designed to
enable the rapid design and modular composition of soft-
ware function modules. FRESCO provides many securi-
ty software modules that implement various security
functions, such as attack deflectors, IDS logic, firewalls,
scan detectors, and corresponding APIs to invoke these
modules. Security applications based on FRESCO can
be deployed on any OpenFlow controller to detect and
inhibit threats. The authors also demonstrated the utility
of FRESCO and its performance.

4.3 Threats to the application layer and countermeasures

In the application layer, attackers can tamper with the net-
work configuration, steal network information, seize net-
work resources and so on through inserting spyware or
malware computer programs to the application. In this
manner, they can interfere with the normal operation of
the control layer and influence the reliability and availabil-
ity of the network.

Although OpenFlow can deploy security detection algo-
rithms for security applications, these security applications are
not mandatory [55]. The variety of applications developed by
different independent organizations using different
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programming languages could produce interoperability incon-
sistency or security policy conflicts. Some of the security threats
to and countermeasures of the application layer are described
below.

4.3.1 Illegal access

(1) Threat description
According to the specification of OpenFlow, applica-

tions running on the controller are very flexible and ex-
tensible and have privileges to access network resources
and control network behavior. However, most of these
applications are developed by third-party organizations,
not controller vendors. Therefore, the lack of a standard-
ized security mechanism for SDN applications causes
serious security threats. Security vulnerabilities based
on threat vectors in SDN are presented in [56]. The au-
thors opine that it is necessary to design mandatory
mechanisms to create a trust relationship between the
controller and applications running on it. Although there
currently exist various techniques to certify devices in a
network, there is no commonly accepted mechanism for
verifying network applications.

(2) Countermeasures
PermOF [57] is a fine-grained permission system

that can provide privilege control to OpenFlow

controllers and applications running on top of it.
PermOF summarizes a set of 18 permissions that
needed to be enforced by the controller APIs, and
also proposes a customized isolation framework
that maintains various priorities for applications
and isolates the control traffic from the data traffic
to achieve comprehensive resource isolation and
access control.

NICE [58] is a new solution for enforcing model
checking with symbolic execution of event handlers,
which can quickly explore the state space of unmod-
ified controller programs written for the popular NOX
platform. NICE can also be used as a tool to automate
the testing of OpenFlow applications to verify their
correctness. Verificare [59] is a tool for modeling dis-
tributed systems using formal verification techniques.
Authors demonstrated this tool by modeling an
OpenFlow network iteratively to verify its correctness
and critical properties. VeriCon [60] is a verification
system which can confirm the correctness of the con-
troller’s programs. VeriCon implements classical
FloydHoare-Dijkstra deductive verification through
first-order logic and desired network-wide invariants.
Experimental results show that VeriCon is able to val-
idate correctness and identify bugs rapidly for in
large-scale SDN applications.

Table 1 Security threats and typical countermeasures in SDN architecture

Targeted level Threats type Caused by Typical countermeasures

Data forwarding
layer

Man-in-middle attack between
switch and controller

• The communication channel is not
secure without TLS support

• FlowChecker [29]
• ForNOX [30]
• VeriFlow [31]
• Controller replication [32]

DoS attack to saturate Flow
Table and Flow Buffer

• Limited storage capacity of Flow
Table and Flow Buffer

• Enormous number of packets in a short time

• FlowVisor [33]
• Virtual source Address Validation

Edge (VAVE) [34]
• Resonance [35]

Control layer DoS/DDoS attack on the
controller

• Attacking traffic can be mixed with
normal traffic and is hard to distinguish

• Limited computing and storage
resources of the controller

• FloodGuard [38]
• DDoS Blocking Application [39]
• Content-Oriented Networking

Architecture (CONA) [40]

Threats based on distributed
multi-controllers

• Distribution of access control
• Incorporation difficult for multi-tenant controllers
• Inconsistent configuration of multiple controllers

• DISCO [44]
• McNettle [47]
• HyperFlow [48]

Threats from applications • Open programmatic interface
• Malicious Applications

• SE-Floodlight [53]
• FRESCO [54]

Application
layer

Illegal access • Bypassing of the authentication mechanism
• Software vulnerabilities of the controller

• PermOF [57]
• NICE [58]
• Verificare [59]
• VeriCon [60]

Security rules and configuration
conflicts

• Variety for application software
• Difference of access control and accountability

for various application software

• Flover [61]
• Anteater [62]
• NetPlumber [63]
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4.3.2 Security rules and configuration conflict

(1) Threats description
In order to provide a wide range of network services,

the application layer needs to have security applications
for accessing the security interfaces of the controller.
Along with the complexity of the applications, conflicts
may appear between security rules, resulting in a confu-
sion of network services and management complexity.

(2) Countermeasures
Flover [61] is a model checking systemwhich verifies

flow policies using assertion sets. Flover is implemented
based on NOX using the Yices SMT solver and can pro-
vide a formal validation of the functions of an OpenFlow
network’s security behavior. In addition, Flover supports
a batch mode for obtaining responses from a controller
quickly.

Anteater [62] proposes a static analysis method for
debugging network configuration conflicts, which can
offer verification functionality for the data forwarding
layer. Generally, it has a short run time, and may detect
problems that have occurred rather than issues in real-
time for blocking potential disruptions to the network.

NetPlumber [63] is a policy detection tool, which can
monitor network consistency caused by an incremental
change in the network’s state in real-time. Header Space
Analysis (HSA) [64] is the theoretical basis for the tool,
which is the same authors’ previous work and can quick-
ly validate every network status update through incre-
mental calculations based on the dependency sub-graph.

A conceivable scenario is that the firewall is bypassed
and switch flow rules are rewritten. In [65], the author
applied HSA on the SDN firewall and developed a con-
flict detection and resolution algorithm, which can create
and maintain a dynamic flow graph to detect the flow
space and the authorization space of the firewall. Con-
flicting parts of the flow graph can be avoided by
inserting flow-blocking rules or refusing to insert new
rules, which will strengthen SDN network security
greatly.

4.4 Summarization of security issues

For convenience, Table 1 presents a summary of the security
threats that SDN networks are exposed to, along with possible
countermeasures that are discussed in this section.

5 Conclusions

In this paper, we concisely reviewed the characteristics and
architecture of SDN. We explained how SDN function and

analyzed their issues and countermeasures from a security
perspective, and gave SDN great security characteristics of
the uniqueness and openness. Then, we discussed the state
of the art of SDN security and analyzed the security issues
from three aspects: the data forwarding layer, the control layer
and the application layer. Several preventive and mitigation
techniques were also described to address some of those se-
curity issues. In the future, network virtualization and middle-
boxes based on cloud computing will be considered an impor-
tant application for SDN, which will bring additional security
threats. Therefore, the issue of security in these applications is
expected to draw increasing amounts of attention.
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